[ { "id": 0, "page": 2, "bounding_box": [ 113.38600158691406, 419.5950012207031, 505.23199462890625, 497.9010009765625 ], "latex_content": "\\begin{table}[htpb]\n\\begin{center}\n\\begin{footnotesize}\n\\newcommand{\\tabincell}[2]{\\begin{tabular}{@{}#1@{}}#2\\end{tabular}}\n\\begin{tabular}{c|c|c|c|c}\\hline\nApproach & Communication & Assumptions & Min signal strength & Strength type \\\\\\hline\nLasso &0 &\\tabincell{c}{Mutual Incoherence \\\\Sparse Eigenvalue} & $\\sqrt{\\frac{\\log p}{n}}$ & Element-wise\\\\\\hline\nGroup lasso &$\\Ocal(np)$ & \\tabincell{c}{Mutual Incoherence \\\\Sparse Eigenvalue} &$\\sqrt{\\frac{1}{n}\\rbr{1 + \\frac{\\log p}{m}}}$ &Row-wise \\\\\\hline \nDSML & $\\Ocal(p)$ &\\tabincell{c}{Generalized Coherence \\\\ Restricted Eigenvalue} &$\\sqrt{\\frac{1}{n}\\rbr{1 + \\frac{\\log p}{m}}} + \\frac{|S|\\log p}{n}$ &Row-wise \\\\\\hline\n\\end{tabular}\n\\small \\caption{\\small Lower bound on coefficients required to\n ensure support recovery with $p$ variables, $m$ tasks, $n$\n samples per task and a true support of size $|S|$.}\n\\label{tab:comparison_sparsistency}\n\\end{footnotesize}\n\\end{center}\n\\end{table}", "extracted_content": [ [ "Approach", "Communication", "Assumptions", "Min signal strength", "Strength type" ], [ "Lasso", "0", "Mutual Incoherence\nSparse Eigenvalue", "q\nlog p\nn", "Element-wise" ], [ "Group lasso", "O(np)", "Mutual Incoherence\nSparse Eigenvalue", "q\n1 \u00001 + log p\u0001\nn m", "Row-wise" ], [ "DSML", "O(p)", "Generalized Coherence\nRestricted Eigenvalue", "q\nn1 \u00001 + lo mg p\u0001+ |S| nlog p", "Row-wise" ] ], "similarity_score": 0.6642335766423357, "table_image": "images/1510.00633v1/table_0.png", "page_image": "pages/1510.00633v1/page_2.png" }, { "id": 1, "page": 3, "bounding_box": [ 116.75, 95.239990234375, 495.25, 162.74700927734375 ], "latex_content": "\\begin{table}[htpb]\n\\begin{footnotesize}\n\\newcommand{\\tabincell}[2]{\\begin{tabular}{@{}#1@{}}#2\\end{tabular}}\n\\begin{center}\n\\begin{tabular}{c|c|c|c}\\hline\nApproach & Assumptions & $\\ell_1/\\ell_2$ estimation error & Prediction error \\\\\\hline\nLasso &Restricted Eigenvalue & $ \\sqrt{\\frac{|S|^2 \\log p}{n}}$ & $\\frac{|S| \\log p}{n}$ \\\\\\hline\nGroup lasso & Restricted Eigenvalue & $\\frac{|S|}{\\sqrt{n}} \\sqrt{1 + \\frac{\\log p}{m}}$ &$\\frac{|S|}{n} \\rbr{1 + \\frac{\\log p}{m}}$ \\\\\\hline \nDSML &\\tabincell{c}{Generalized Coherence \\\\ Restricted Eigenvalue} & $\\frac{|S|}{\\sqrt{n}} \\sqrt{1 + \\frac{\\log p}{m}} + \\frac{|S|^2 \\log p}{n}$ &$\\frac{|S|}{n} \\rbr{1 + \\frac{\\log p}{m}} + \\frac{|S|^3 (\\log p)^2}{n^2}$ \\\\\\hline\n\\end{tabular}\n\\end{center}\n\\small \\caption{\\small Comparison of parameter estimation errors and\n prediction errors. The DSML guarantees improve over Lasso and have\n the same leading term as the Group lasso as long as $m