Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
conversational-qa
License:
"""TODO(coqa): Add a description here.""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import datasets | |
# TODO(coqa): BibTeX citation | |
_CITATION = """\ | |
@InProceedings{SivaAndAl:Coca, | |
author = {Siva, Reddy and Danqi, Chen and Christopher D., Manning}, | |
title = {WikiQA: A Challenge Dataset for Open-Domain Question Answering}, | |
journal = { arXiv}, | |
year = {2018}, | |
} | |
""" | |
# TODO(coqa): | |
_DESCRIPTION = """\ | |
CoQA: A Conversational Question Answering Challenge | |
""" | |
_TRAIN_DATA_URL = "https://datasets.stanford.edu/data/coqa/coqa-train-v1.0.json" | |
_DEV_DATA_URL = "https://datasets.stanford.edu/data/coqa/coqa-dev-v1.0.json" | |
class Coqa(datasets.GeneratorBasedBuilder): | |
"""TODO(coqa): Short description of my dataset.""" | |
# TODO(coqa): Set up version. | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
# TODO(coqa): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"source": datasets.Value("string"), | |
"story": datasets.Value("string"), | |
"questions": datasets.features.Sequence(datasets.Value("string")), | |
"answers": datasets.features.Sequence( | |
{ | |
"input_text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
"answer_end": datasets.Value("int32"), | |
} | |
), | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://stanfordnlp.github.io/coqa/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(coqa): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
urls_to_download = {"train": _TRAIN_DATA_URL, "dev": _DEV_DATA_URL} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "split": "train"} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"} | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
# TODO(coqa): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for row in data["data"]: | |
questions = [question["input_text"] for question in row["questions"]] | |
story = row["story"] | |
source = row["source"] | |
answers_start = [answer["span_start"] for answer in row["answers"]] | |
answers_end = [answer["span_end"] for answer in row["answers"]] | |
answers = [answer["input_text"] for answer in row["answers"]] | |
yield row["id"], { | |
"source": source, | |
"story": story, | |
"questions": questions, | |
"answers": {"input_text": answers, "answer_start": answers_start, "answer_end": answers_end}, | |
} | |