Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
conversational-qa
License:
"""CoQA dataset.""" | |
import json | |
import datasets | |
_HOMEPAGE = "https://stanfordnlp.github.io/coqa/" | |
_CITATION = """\ | |
@article{reddy-etal-2019-coqa, | |
title = "{C}o{QA}: A Conversational Question Answering Challenge", | |
author = "Reddy, Siva and | |
Chen, Danqi and | |
Manning, Christopher D.", | |
journal = "Transactions of the Association for Computational Linguistics", | |
volume = "7", | |
year = "2019", | |
address = "Cambridge, MA", | |
publisher = "MIT Press", | |
url = "https://aclanthology.org/Q19-1016", | |
doi = "10.1162/tacl_a_00266", | |
pages = "249--266", | |
} | |
""" | |
_DESCRIPTION = """\ | |
CoQA: A Conversational Question Answering Challenge | |
""" | |
_TRAIN_DATA_URL = "https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json" | |
_DEV_DATA_URL = "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json" | |
class Coqa(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"source": datasets.Value("string"), | |
"story": datasets.Value("string"), | |
"questions": datasets.features.Sequence(datasets.Value("string")), | |
"answers": datasets.features.Sequence( | |
{ | |
"input_text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
"answer_end": datasets.Value("int32"), | |
} | |
), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = {"train": _TRAIN_DATA_URL, "dev": _DEV_DATA_URL} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "split": "train"} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"} | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for row in data["data"]: | |
questions = [question["input_text"] for question in row["questions"]] | |
story = row["story"] | |
source = row["source"] | |
answers_start = [answer["span_start"] for answer in row["answers"]] | |
answers_end = [answer["span_end"] for answer in row["answers"]] | |
answers = [answer["input_text"] for answer in row["answers"]] | |
yield row["id"], { | |
"source": source, | |
"story": story, | |
"questions": questions, | |
"answers": {"input_text": answers, "answer_start": answers_start, "answer_end": answers_end}, | |
} | |