Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
conversational-qa
License:
Commit
·
0d9e995
1
Parent(s):
b6f6bab
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (7315a186f45afbcc3268c99aabd468b3d6dab466)
- Delete loading script (9df4273a275784b2b4ab1f5255e4b1c3894a644a)
- Delete legacy dataset_infos.json (06bdab84a7255678e96fad3bd4008abe5c14a817)
- README.md +14 -7
- coqa.py +0 -91
- data/train-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
README.md
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
---
|
2 |
annotations_creators:
|
3 |
- crowdsourced
|
4 |
-
language:
|
5 |
-
- en
|
6 |
language_creators:
|
7 |
- found
|
|
|
|
|
8 |
license:
|
9 |
- other
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
-
pretty_name: 'CoQA: Conversational Question Answering Challenge'
|
13 |
size_categories:
|
14 |
- 1K<n<10K
|
15 |
source_datasets:
|
@@ -22,6 +21,7 @@ task_categories:
|
|
22 |
task_ids:
|
23 |
- extractive-qa
|
24 |
paperswithcode_id: coqa
|
|
|
25 |
tags:
|
26 |
- conversational-qa
|
27 |
dataset_info:
|
@@ -42,13 +42,20 @@ dataset_info:
|
|
42 |
dtype: int32
|
43 |
splits:
|
44 |
- name: train
|
45 |
-
num_bytes:
|
46 |
num_examples: 7199
|
47 |
- name: validation
|
48 |
-
num_bytes:
|
49 |
num_examples: 500
|
50 |
-
download_size:
|
51 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
---
|
53 |
|
54 |
# Dataset Card for "coqa"
|
|
|
1 |
---
|
2 |
annotations_creators:
|
3 |
- crowdsourced
|
|
|
|
|
4 |
language_creators:
|
5 |
- found
|
6 |
+
language:
|
7 |
+
- en
|
8 |
license:
|
9 |
- other
|
10 |
multilinguality:
|
11 |
- monolingual
|
|
|
12 |
size_categories:
|
13 |
- 1K<n<10K
|
14 |
source_datasets:
|
|
|
21 |
task_ids:
|
22 |
- extractive-qa
|
23 |
paperswithcode_id: coqa
|
24 |
+
pretty_name: 'CoQA: Conversational Question Answering Challenge'
|
25 |
tags:
|
26 |
- conversational-qa
|
27 |
dataset_info:
|
|
|
42 |
dtype: int32
|
43 |
splits:
|
44 |
- name: train
|
45 |
+
num_bytes: 17953365
|
46 |
num_examples: 7199
|
47 |
- name: validation
|
48 |
+
num_bytes: 1223427
|
49 |
num_examples: 500
|
50 |
+
download_size: 12187487
|
51 |
+
dataset_size: 19176792
|
52 |
+
configs:
|
53 |
+
- config_name: default
|
54 |
+
data_files:
|
55 |
+
- split: train
|
56 |
+
path: data/train-*
|
57 |
+
- split: validation
|
58 |
+
path: data/validation-*
|
59 |
---
|
60 |
|
61 |
# Dataset Card for "coqa"
|
coqa.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
"""CoQA dataset."""
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
|
9 |
-
_HOMEPAGE = "https://stanfordnlp.github.io/coqa/"
|
10 |
-
|
11 |
-
_CITATION = """\
|
12 |
-
@article{reddy-etal-2019-coqa,
|
13 |
-
title = "{C}o{QA}: A Conversational Question Answering Challenge",
|
14 |
-
author = "Reddy, Siva and
|
15 |
-
Chen, Danqi and
|
16 |
-
Manning, Christopher D.",
|
17 |
-
journal = "Transactions of the Association for Computational Linguistics",
|
18 |
-
volume = "7",
|
19 |
-
year = "2019",
|
20 |
-
address = "Cambridge, MA",
|
21 |
-
publisher = "MIT Press",
|
22 |
-
url = "https://aclanthology.org/Q19-1016",
|
23 |
-
doi = "10.1162/tacl_a_00266",
|
24 |
-
pages = "249--266",
|
25 |
-
}
|
26 |
-
"""
|
27 |
-
|
28 |
-
_DESCRIPTION = """\
|
29 |
-
CoQA: A Conversational Question Answering Challenge
|
30 |
-
"""
|
31 |
-
|
32 |
-
_TRAIN_DATA_URL = "https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json"
|
33 |
-
_DEV_DATA_URL = "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json"
|
34 |
-
|
35 |
-
|
36 |
-
class Coqa(datasets.GeneratorBasedBuilder):
|
37 |
-
|
38 |
-
VERSION = datasets.Version("1.0.0")
|
39 |
-
|
40 |
-
def _info(self):
|
41 |
-
return datasets.DatasetInfo(
|
42 |
-
description=_DESCRIPTION,
|
43 |
-
features=datasets.Features(
|
44 |
-
{
|
45 |
-
"source": datasets.Value("string"),
|
46 |
-
"story": datasets.Value("string"),
|
47 |
-
"questions": datasets.features.Sequence(datasets.Value("string")),
|
48 |
-
"answers": datasets.features.Sequence(
|
49 |
-
{
|
50 |
-
"input_text": datasets.Value("string"),
|
51 |
-
"answer_start": datasets.Value("int32"),
|
52 |
-
"answer_end": datasets.Value("int32"),
|
53 |
-
}
|
54 |
-
),
|
55 |
-
}
|
56 |
-
),
|
57 |
-
homepage=_HOMEPAGE,
|
58 |
-
citation=_CITATION,
|
59 |
-
)
|
60 |
-
|
61 |
-
def _split_generators(self, dl_manager):
|
62 |
-
"""Returns SplitGenerators."""
|
63 |
-
urls_to_download = {"train": _TRAIN_DATA_URL, "dev": _DEV_DATA_URL}
|
64 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
65 |
-
|
66 |
-
return [
|
67 |
-
datasets.SplitGenerator(
|
68 |
-
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "split": "train"}
|
69 |
-
),
|
70 |
-
datasets.SplitGenerator(
|
71 |
-
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"}
|
72 |
-
),
|
73 |
-
]
|
74 |
-
|
75 |
-
def _generate_examples(self, filepath, split):
|
76 |
-
"""Yields examples."""
|
77 |
-
with open(filepath, encoding="utf-8") as f:
|
78 |
-
data = json.load(f)
|
79 |
-
for row in data["data"]:
|
80 |
-
questions = [question["input_text"] for question in row["questions"]]
|
81 |
-
story = row["story"]
|
82 |
-
source = row["source"]
|
83 |
-
answers_start = [answer["span_start"] for answer in row["answers"]]
|
84 |
-
answers_end = [answer["span_end"] for answer in row["answers"]]
|
85 |
-
answers = [answer["input_text"] for answer in row["answers"]]
|
86 |
-
yield row["id"], {
|
87 |
-
"source": source,
|
88 |
-
"story": story,
|
89 |
-
"questions": questions,
|
90 |
-
"answers": {"input_text": answers, "answer_start": answers_start, "answer_end": answers_end},
|
91 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4272ee344ef27112c50237a1ae3b1c90e65e11a101d6874b2f57e4c08d147135
|
3 |
+
size 11394343
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d66f4811dd137818923a3db7a629ce3cf9e73977b5e2541471311c1566bf349f
|
3 |
+
size 793144
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "CoQA: A Conversational Question Answering Challenge\n", "citation": "@article{reddy-etal-2019-coqa,\n title = \"{C}o{QA}: A Conversational Question Answering Challenge\",\n author = \"Reddy, Siva and\n Chen, Danqi and\n Manning, Christopher D.\",\n journal = \"Transactions of the Association for Computational Linguistics\",\n volume = \"7\",\n year = \"2019\",\n address = \"Cambridge, MA\",\n publisher = \"MIT Press\",\n url = \"https://aclanthology.org/Q19-1016\",\n doi = \"10.1162/tacl_a_00266\",\n pages = \"249--266\",\n}\n", "homepage": "https://stanfordnlp.github.io/coqa/", "license": "", "features": {"source": {"dtype": "string", "id": null, "_type": "Value"}, "story": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answers": {"feature": {"input_text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}, "answer_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "coqa", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 17981459, "num_examples": 7199, "dataset_name": "coqa"}, "validation": {"name": "validation", "num_bytes": 1225518, "num_examples": 500, "dataset_name": "coqa"}}, "download_checksums": {"https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json": {"num_bytes": 49001836, "checksum": "b0fdb2bc1bd38dd3ca2ce5fa2ac3e02c6288ac914f241ac409a655ffb6619fa6"}, "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json": {"num_bytes": 9090845, "checksum": "dfa367a9733ce53222918d0231d9b3bedc2b8ee831a2845f62dfc70701f2540a"}}, "download_size": 58092681, "post_processing_size": null, "dataset_size": 19206977, "size_in_bytes": 77299658}}
|
|
|
|