Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""IMDB movie reviews dataset.""" | |
import os | |
import datasets | |
from datasets.tasks import TextClassification | |
_DESCRIPTION = """\ | |
Large Movie Review Dataset. | |
This is a dataset for binary sentiment classification containing substantially \ | |
more data than previous benchmark datasets. We provide a set of 25,000 highly \ | |
polar movie reviews for training, and 25,000 for testing. There is additional \ | |
unlabeled data for use as well.\ | |
""" | |
_CITATION = """\ | |
@InProceedings{maas-EtAl:2011:ACL-HLT2011, | |
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher}, | |
title = {Learning Word Vectors for Sentiment Analysis}, | |
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies}, | |
month = {June}, | |
year = {2011}, | |
address = {Portland, Oregon, USA}, | |
publisher = {Association for Computational Linguistics}, | |
pages = {142--150}, | |
url = {http://www.aclweb.org/anthology/P11-1015} | |
} | |
""" | |
_DOWNLOAD_URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" | |
class IMDBReviewsConfig(datasets.BuilderConfig): | |
"""BuilderConfig for IMDBReviews.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for IMDBReviews. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |
class Imdb(datasets.GeneratorBasedBuilder): | |
"""IMDB movie reviews dataset.""" | |
BUILDER_CONFIGS = [ | |
IMDBReviewsConfig( | |
name="plain_text", | |
description="Plain text", | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])} | |
), | |
supervised_keys=None, | |
homepage="http://ai.stanford.edu/~amaas/data/sentiment/", | |
citation=_CITATION, | |
task_templates=[TextClassification(text_column="text", label_column="label")], | |
) | |
def _vocab_text_gen(self, archive): | |
for _, ex in self._generate_examples(archive, os.path.join("aclImdb", "train")): | |
yield ex["text"] | |
def _split_generators(self, dl_manager): | |
arch_path = dl_manager.download_and_extract(_DOWNLOAD_URL) | |
data_dir = os.path.join(arch_path, "aclImdb") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train")} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test")} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split("unsupervised"), | |
gen_kwargs={"directory": os.path.join(data_dir, "train"), "labeled": False}, | |
), | |
] | |
def _generate_examples(self, directory, labeled=True): | |
"""Generate IMDB examples.""" | |
# For labeled examples, extract the label from the path. | |
if labeled: | |
files = { | |
"pos": sorted(os.listdir(os.path.join(directory, "pos"))), | |
"neg": sorted(os.listdir(os.path.join(directory, "neg"))), | |
} | |
for key in files: | |
for id_, file in enumerate(files[key]): | |
filepath = os.path.join(directory, key, file) | |
with open(filepath, encoding="UTF-8") as f: | |
yield key + "_" + str(id_), {"text": f.read(), "label": key} | |
else: | |
unsup_files = sorted(os.listdir(os.path.join(directory, "unsup"))) | |
for id_, file in enumerate(unsup_files): | |
filepath = os.path.join(directory, "unsup", file) | |
with open(filepath, encoding="UTF-8") as f: | |
yield id_, {"text": f.read(), "label": -1} | |