imdb / imdb.py
system's picture
system HF staff
Update files from the datasets library (from 1.8.0)
0c5d631
raw
history blame
4.75 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""IMDB movie reviews dataset."""
import os
import datasets
from datasets.tasks import TextClassification
_DESCRIPTION = """\
Large Movie Review Dataset.
This is a dataset for binary sentiment classification containing substantially \
more data than previous benchmark datasets. We provide a set of 25,000 highly \
polar movie reviews for training, and 25,000 for testing. There is additional \
unlabeled data for use as well.\
"""
_CITATION = """\
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
title = {Learning Word Vectors for Sentiment Analysis},
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
month = {June},
year = {2011},
address = {Portland, Oregon, USA},
publisher = {Association for Computational Linguistics},
pages = {142--150},
url = {http://www.aclweb.org/anthology/P11-1015}
}
"""
_DOWNLOAD_URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
class IMDBReviewsConfig(datasets.BuilderConfig):
"""BuilderConfig for IMDBReviews."""
def __init__(self, **kwargs):
"""BuilderConfig for IMDBReviews.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class Imdb(datasets.GeneratorBasedBuilder):
"""IMDB movie reviews dataset."""
BUILDER_CONFIGS = [
IMDBReviewsConfig(
name="plain_text",
description="Plain text",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
),
supervised_keys=None,
homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
citation=_CITATION,
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _vocab_text_gen(self, archive):
for _, ex in self._generate_examples(archive, os.path.join("aclImdb", "train")):
yield ex["text"]
def _split_generators(self, dl_manager):
arch_path = dl_manager.download_and_extract(_DOWNLOAD_URL)
data_dir = os.path.join(arch_path, "aclImdb")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train")}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test")}
),
datasets.SplitGenerator(
name=datasets.Split("unsupervised"),
gen_kwargs={"directory": os.path.join(data_dir, "train"), "labeled": False},
),
]
def _generate_examples(self, directory, labeled=True):
"""Generate IMDB examples."""
# For labeled examples, extract the label from the path.
if labeled:
files = {
"pos": sorted(os.listdir(os.path.join(directory, "pos"))),
"neg": sorted(os.listdir(os.path.join(directory, "neg"))),
}
for key in files:
for id_, file in enumerate(files[key]):
filepath = os.path.join(directory, key, file)
with open(filepath, encoding="UTF-8") as f:
yield key + "_" + str(id_), {"text": f.read(), "label": key}
else:
unsup_files = sorted(os.listdir(os.path.join(directory, "unsup")))
for id_, file in enumerate(unsup_files):
filepath = os.path.join(directory, "unsup", file)
with open(filepath, encoding="UTF-8") as f:
yield id_, {"text": f.read(), "label": -1}