import csv import os import datasets _CITATION = """\ @article{go2009twitter, title={Twitter sentiment classification using distant supervision}, author={Go, Alec and Bhayani, Richa and Huang, Lei}, journal={CS224N project report, Stanford}, volume={1}, number={12}, pages={2009}, year={2009} } """ _DESCRIPTION = """\ Sentiment140 consists of Twitter messages with emoticons, which are used as noisy labels for sentiment classification. For more detailed information please refer to the paper. """ _URL = "http://help.sentiment140.com/home" _DATA_URL = "https://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip" _TEST_FILE_NAME = "testdata.manual.2009.06.14.csv" _TRAIN_FILE_NAME = "training.1600000.processed.noemoticon.csv" class Sentiment140Config(datasets.BuilderConfig): """BuilderConfig for Break""" def __init__(self, data_url, **kwargs): """BuilderConfig for BlogAuthorship Args: data_url: `string`, url to the dataset (word or raw level) **kwargs: keyword arguments forwarded to super. """ super(Sentiment140Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.data_url = data_url class Sentiment140(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.1.0") BUILDER_CONFIGS = [ Sentiment140Config( name="sentiment140", data_url=_DATA_URL, description="sentiment classification dataset. Twitter messages are classified as either 'positive'=0, 'neutral'=1 or 'negative'=2.", ) ] def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "text": datasets.Value("string"), "date": datasets.Value("string"), "user": datasets.Value("string"), "sentiment": datasets.Value("int32"), "query": datasets.Value("string"), } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage=_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_DATA_URL) test_csv_file = os.path.join(data_dir, _TEST_FILE_NAME) train_csv_file = os.path.join(data_dir, _TRAIN_FILE_NAME) if self.config.name == "sentiment140": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"file_path": train_csv_file}, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"file_path": test_csv_file}, ), ] else: raise NotImplementedError(f"{self.config.name} does not exist") def _generate_examples(self, file_path): """Yields examples.""" with open(file_path, encoding="ISO-8859-1") as f: data = csv.reader(f, delimiter=",", quotechar='"') for row_id, row in enumerate(data): sentiment, tweet_id, date, query, user_name, message = row yield f"{row_id}_{tweet_id}", { "text": message, "date": date, "user": user_name, "sentiment": int(sentiment), "query": query, }