Datasets:
File size: 6,679 Bytes
9de948e 15c608a 9de948e 15c608a f9e2fc3 9de948e f9e2fc3 9de948e 7b48b81 9de948e 9ac80eb fb10111 6bf18ed d0b4c1c 6bf18ed d0b4c1c 6bf18ed 6b03ff1 9de948e 9ac80eb 9de948e 9ac80eb 9de948e 6bf18ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
- sentiment-classification
- sentiment-scoring
paperswithcode_id: sst
pretty_name: Stanford Sentiment Treebank
dataset_info:
- config_name: default
features:
- name: sentence
dtype: string
- name: label
dtype: float32
- name: tokens
dtype: string
- name: tree
dtype: string
splits:
- name: train
num_bytes: 2818768
num_examples: 8544
- name: validation
num_bytes: 366205
num_examples: 1101
- name: test
num_bytes: 730154
num_examples: 2210
download_size: 7162356
dataset_size: 3915127
- config_name: dictionary
features:
- name: phrase
dtype: string
- name: label
dtype: float32
splits:
- name: dictionary
num_bytes: 12121843
num_examples: 239232
download_size: 7162356
dataset_size: 12121843
- config_name: ptb
features:
- name: ptb_tree
dtype: string
splits:
- name: train
num_bytes: 2185694
num_examples: 8544
- name: validation
num_bytes: 284132
num_examples: 1101
- name: test
num_bytes: 566248
num_examples: 2210
download_size: 7162356
dataset_size: 3036074
config_names:
- default
- dictionary
- ptb
---
# Dataset Card for sst
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://nlp.stanford.edu/sentiment/index.html
- **Repository:** [Needs More Information]
- **Paper:** [Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank](https://www.aclweb.org/anthology/D13-1170/)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
The Stanford Sentiment Treebank is the first corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language.
### Supported Tasks and Leaderboards
- `sentiment-scoring`: Each complete sentence is annotated with a `float` label that indicates its level of positive sentiment from 0.0 to 1.0. One can decide to use only complete sentences or to include the contributions of the sub-sentences (aka phrases). The labels for each phrase are included in the `dictionary` configuration. To obtain all the phrases in a sentence we need to visit the parse tree included with each example. In contrast, the `ptb` configuration explicitly provides all the labelled parse trees in Penn Treebank format. Here the labels are binned in 5 bins from 0 to 4.
- `sentiment-classification`: We can transform the above into a binary sentiment classification task by rounding each label to 0 or 1.
### Languages
The text in the dataset is in English
## Dataset Structure
### Data Instances
For the `default` configuration:
```
{'label': 0.7222200036048889,
'sentence': 'Yet the act is still charming here .',
'tokens': 'Yet|the|act|is|still|charming|here|.',
'tree': '15|13|13|10|9|9|11|12|10|11|12|14|14|15|0'}
```
For the `dictionary` configuration:
```
{'label': 0.7361099720001221,
'phrase': 'still charming'}
```
For the `ptb` configuration:
```
{'ptb_tree': '(3 (2 Yet) (3 (2 (2 the) (2 act)) (3 (4 (3 (2 is) (3 (2 still) (4 charming))) (2 here)) (2 .))))'}
```
### Data Fields
- `sentence`: a complete sentence expressing an opinion about a film
- `label`: the degree of "positivity" of the opinion, on a scale between 0.0 and 1.0
- `tokens`: a sequence of tokens that form a sentence
- `tree`: a sentence parse tree formatted as a parent pointer tree
- `phrase`: a sub-sentence of a complete sentence
- `ptb_tree`: a sentence parse tree formatted in Penn Treebank-style, where each component's degree of positive sentiment is labelled on a scale from 0 to 4
### Data Splits
The set of complete sentences (both `default` and `ptb` configurations) is split into a training, validation and test set. The `dictionary` configuration has only one split as it is used for reference rather than for learning.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
Rotten Tomatoes reviewers.
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
@inproceedings{socher-etal-2013-recursive,
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
author = "Socher, Richard and
Perelygin, Alex and
Wu, Jean and
Chuang, Jason and
Manning, Christopher D. and
Ng, Andrew and
Potts, Christopher",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D13-1170",
pages = "1631--1642",
}
```
### Contributions
Thanks to [@patpizio](https://github.com/patpizio) for adding this dataset. |