openwebtext-10k / openwebtext-10k.py
stas's picture
build script
873619f
raw
history blame
3.08 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Open WebText Corpus"""
import os
import re
from itertools import chain
import datasets
_CITATION = """\
@misc{Gokaslan2019OpenWeb,
title={OpenWebText Corpus},
author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex},
howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}},
year={2019}
}
"""
_DESCRIPTION = """\
An open-source replication of the WebText dataset from OpenAI.
This is a small subset representing the first 10K records from the original dataset - created for testing.
The full 8M-record dataset is at https://huggingface.co/datasets/openwebtext
"""
_URL = "https://cdn-datasets.huggingface.co/nlp/datasets/openwebtext/openwebtext-10k.tar.xz"
class Openwebtext(datasets.GeneratorBasedBuilder):
"""The Open WebText dataset."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="plain_text",
description="Plain text",
version=datasets.Version("1.0.0"),
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({"text": datasets.Value("string")}),
homepage="https://skylion007.github.io/OpenWebTextCorpus/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_URL)
owt_dir = os.path.join(dl_dir, "openwebtext-10k")
subset_xzs = [
os.path.join(owt_dir, file_name)
for file_name in sorted(os.listdir(owt_dir))
if file_name.endswith("xz") # filter out ...xz.lock
]
ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75))
nested_txt_files = [
[
os.path.join(ex_dir, txt_file_name)
for txt_file_name in sorted(os.listdir(ex_dir))
if txt_file_name.endswith("txt")
]
for ex_dir in ex_dirs
]
txt_files = chain(*nested_txt_files)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}),
]
def _generate_examples(self, txt_files):
"""Yields examples."""
for idx, filepath in enumerate(txt_files):
with open(filepath, encoding="utf-8") as f:
yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}