Datasets:

ArXiv:
License:
system HF staff commited on
Commit
267a466
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - found
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - af
8
+ - am
9
+ - ar
10
+ - as
11
+ - az
12
+ - be
13
+ - bg
14
+ - bn
15
+ - bn_rom
16
+ - br
17
+ - bs
18
+ - ca
19
+ - cs
20
+ - cy
21
+ - da
22
+ - de
23
+ - el
24
+ - en
25
+ - eo
26
+ - es
27
+ - et
28
+ - eu
29
+ - fa
30
+ - ff
31
+ - fi
32
+ - fr
33
+ - fy
34
+ - ga
35
+ - gd
36
+ - gl
37
+ - gn
38
+ - gu
39
+ - ha
40
+ - he
41
+ - hi
42
+ - hi_rom
43
+ - hr
44
+ - ht
45
+ - hu
46
+ - hy
47
+ - id
48
+ - ig
49
+ - is
50
+ - it
51
+ - ja
52
+ - jv
53
+ - ka
54
+ - kk
55
+ - km
56
+ - kn
57
+ - ko
58
+ - ku
59
+ - ky
60
+ - la
61
+ - lg
62
+ - li
63
+ - ln
64
+ - lo
65
+ - lt
66
+ - lv
67
+ - mg
68
+ - mk
69
+ - ml
70
+ - mn
71
+ - mr
72
+ - ms
73
+ - my
74
+ - my_zaw
75
+ - ne
76
+ - nl
77
+ - no
78
+ - ns
79
+ - om
80
+ - or
81
+ - pa
82
+ - pl
83
+ - ps
84
+ - pt
85
+ - qu
86
+ - rm
87
+ - ro
88
+ - ru
89
+ - sa
90
+ - si
91
+ - sc
92
+ - sd
93
+ - sk
94
+ - sl
95
+ - so
96
+ - sq
97
+ - sr
98
+ - ss
99
+ - su
100
+ - sv
101
+ - sw
102
+ - ta
103
+ - ta_rom
104
+ - te
105
+ - te_rom
106
+ - th
107
+ - tl
108
+ - tn
109
+ - tr
110
+ - ug
111
+ - uk
112
+ - ur
113
+ - ur_rom
114
+ - uz
115
+ - vi
116
+ - wo
117
+ - xh
118
+ - yi
119
+ - yo
120
+ - zh-Hans
121
+ - zh-Hant
122
+ - zu
123
+ licenses:
124
+ - unknown
125
+ multilinguality:
126
+ - multilingual
127
+ size_categories:
128
+ - n>1M
129
+ source_datasets:
130
+ - original
131
+ task_categories:
132
+ - sequence-modeling
133
+ task_ids:
134
+ - language-modeling
135
+ ---
136
+
137
+ # Dataset Card Creation Guide
138
+
139
+ ## Table of Contents
140
+ - [Dataset Description](#dataset-description)
141
+ - [Dataset Summary](#dataset-summary)
142
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
143
+ - [Languages](#languages)
144
+ - [Dataset Structure](#dataset-structure)
145
+ - [Data Instances](#data-instances)
146
+ - [Data Fields](#data-instances)
147
+ - [Data Splits](#data-instances)
148
+ - [Dataset Creation](#dataset-creation)
149
+ - [Curation Rationale](#curation-rationale)
150
+ - [Source Data](#source-data)
151
+ - [Annotations](#annotations)
152
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
153
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
154
+ - [Social Impact of Dataset](#social-impact-of-dataset)
155
+ - [Discussion of Biases](#discussion-of-biases)
156
+ - [Other Known Limitations](#other-known-limitations)
157
+ - [Additional Information](#additional-information)
158
+ - [Dataset Curators](#dataset-curators)
159
+ - [Licensing Information](#licensing-information)
160
+ - [Citation Information](#citation-information)
161
+
162
+ ## Dataset Description
163
+
164
+ - **Homepage:** http://data.statmt.org/cc-100/
165
+ - **Repository:** None
166
+ - **Paper:** https://www.aclweb.org/anthology/2020.acl-main.747.pdf, https://www.aclweb.org/anthology/2020.lrec-1.494.pdf
167
+ - **Leaderboard:** [More Information Needed]
168
+ - **Point of Contact:** [More Information Needed]
169
+
170
+ ### Dataset Summary
171
+
172
+ To load a language which isn't part of the config, all you need to do is specify the language code in the config.
173
+ You can find the valid languages in Homepage section of Dataset Description: http://data.statmt.org/cc-100/
174
+ E.g.
175
+
176
+ `dataset = load_dataset("cc100", lang="en")`
177
+
178
+
179
+ ### Supported Tasks and Leaderboards
180
+
181
+ [More Information Needed]
182
+
183
+ ### Languages
184
+
185
+ [More Information Needed]
186
+
187
+ ## Dataset Structure
188
+
189
+ ### Data Instances
190
+
191
+ [More Information Needed]
192
+
193
+ ### Data Fields
194
+
195
+ [More Information Needed]
196
+
197
+ ### Data Splits
198
+
199
+ [More Information Needed]
200
+
201
+ ## Dataset Creation
202
+
203
+ ### Curation Rationale
204
+
205
+ [More Information Needed]
206
+
207
+ ### Source Data
208
+
209
+ [More Information Needed]
210
+
211
+ #### Initial Data Collection and Normalization
212
+
213
+ [More Information Needed]
214
+
215
+ #### Who are the source language producers?
216
+
217
+ [More Information Needed]
218
+
219
+ ### Annotations
220
+
221
+ [More Information Needed]
222
+
223
+ #### Annotation process
224
+
225
+ [More Information Needed]
226
+
227
+ #### Who are the annotators?
228
+
229
+ [More Information Needed]
230
+
231
+ ### Personal and Sensitive Information
232
+
233
+ [More Information Needed]
234
+
235
+ ## Considerations for Using the Data
236
+
237
+ ### Social Impact of Dataset
238
+
239
+ [More Information Needed]
240
+
241
+ ### Discussion of Biases
242
+
243
+ [More Information Needed]
244
+
245
+ ### Other Known Limitations
246
+
247
+ [More Information Needed]
248
+
249
+ ## Additional Information
250
+
251
+ ### Dataset Curators
252
+
253
+ [More Information Needed]
254
+
255
+ ### Licensing Information
256
+
257
+ [More Information Needed]
258
+
259
+ ### Citation Information
260
+
261
+ [More Information Needed]
cc100.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ import datasets
18
+
19
+
20
+ _DESCRIPTION = """\
21
+ This corpus is an attempt to recreate the dataset used for training XLM-R. This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages (indicated by *_rom). This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository. No claims of intellectual property are made on the work of preparation of the corpus.
22
+ """
23
+ _HOMEPAGE_URL = "http://data.statmt.org/cc-100/"
24
+ _CITATION = """\
25
+ @inproceedings{conneau-etal-2020-unsupervised,
26
+ title = "Unsupervised Cross-lingual Representation Learning at Scale",
27
+ author = "Conneau, Alexis and
28
+ Khandelwal, Kartikay and
29
+ Goyal, Naman and
30
+ Chaudhary, Vishrav and
31
+ Wenzek, Guillaume and
32
+ Guzm{'a}n, Francisco and
33
+ Grave, Edouard and
34
+ Ott, Myle and
35
+ Zettlemoyer, Luke and
36
+ Stoyanov, Veselin",
37
+ booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
38
+ month = jul,
39
+ year = "2020",
40
+ address = "Online",
41
+ publisher = "Association for Computational Linguistics",
42
+ url = "https://www.aclweb.org/anthology/2020.acl-main.747",
43
+ doi = "10.18653/v1/2020.acl-main.747",
44
+ pages = "8440--8451",
45
+ abstract = "This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6{%} average accuracy on XNLI, +13{%} average F1 score on MLQA, and +2.4{%} F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7{%} in XNLI accuracy for Swahili and 11.4{%} for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code and models publicly available.",
46
+ }
47
+ @inproceedings{wenzek-etal-2020-ccnet,
48
+ title = "{CCN}et: Extracting High Quality Monolingual Datasets from Web Crawl Data",
49
+ author = "Wenzek, Guillaume and
50
+ Lachaux, Marie-Anne and
51
+ Conneau, Alexis and
52
+ Chaudhary, Vishrav and
53
+ Guzm{'a}n, Francisco and
54
+ Joulin, Armand and
55
+ Grave, Edouard",
56
+ booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
57
+ month = may,
58
+ year = "2020",
59
+ address = "Marseille, France",
60
+ publisher = "European Language Resources Association",
61
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.494",
62
+ pages = "4003--4012",
63
+ abstract = "Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.",
64
+ language = "English",
65
+ ISBN = "979-10-95546-34-4",
66
+ }
67
+ """
68
+
69
+ _VERSION = "1.0.0"
70
+ _BASE_URL = "http://data.statmt.org/cc-100/{}.txt.xz"
71
+
72
+ # Please note: due to the size of the data, only few examples are provided.
73
+ # However, you can pass the lang parameter in config to fetch data of any language in the corpus
74
+ _LANGUAGES = ["am", "sr"]
75
+
76
+
77
+ class Cc100Config(datasets.BuilderConfig):
78
+ def __init__(self, *args, lang=None, **kwargs):
79
+ super().__init__(
80
+ *args,
81
+ name=f"{lang}",
82
+ **kwargs,
83
+ )
84
+ self.lang = lang
85
+
86
+
87
+ class Cc100(datasets.GeneratorBasedBuilder):
88
+ BUILDER_CONFIGS = [
89
+ Cc100Config(
90
+ lang=lang,
91
+ description=f"Language: {lang}",
92
+ version=datasets.Version(_VERSION),
93
+ )
94
+ for lang in _LANGUAGES
95
+ ]
96
+ BUILDER_CONFIG_CLASS = Cc100Config
97
+
98
+ def _info(self):
99
+ return datasets.DatasetInfo(
100
+ description=_DESCRIPTION,
101
+ features=datasets.Features(
102
+ {
103
+ "id": datasets.Value("string"),
104
+ "text": datasets.Value("string"),
105
+ },
106
+ ),
107
+ supervised_keys=None,
108
+ homepage=_HOMEPAGE_URL,
109
+ citation=_CITATION,
110
+ )
111
+
112
+ def _split_generators(self, dl_manager):
113
+ def _base_url(lang):
114
+ return _BASE_URL.format(lang)
115
+
116
+ download_url = _base_url(self.config.lang)
117
+ path = dl_manager.download_and_extract(download_url)
118
+ return [
119
+ datasets.SplitGenerator(
120
+ name=datasets.Split.TRAIN,
121
+ gen_kwargs={"datapath": path},
122
+ )
123
+ ]
124
+
125
+ def _generate_examples(self, datapath):
126
+ with open(datapath, encoding="utf-8") as f:
127
+ for sentence_counter, row in enumerate(f):
128
+ result = (
129
+ sentence_counter,
130
+ {
131
+ "id": str(sentence_counter),
132
+ "text": row,
133
+ },
134
+ )
135
+ yield result
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"am": {"description": "This corpus is an attempt to recreate the dataset used for training XLM-R. This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages (indicated by *_rom). This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository. No claims of intellectual property are made on the work of preparation of the corpus.\n", "citation": "@inproceedings{conneau-etal-2020-unsupervised,\n title = \"Unsupervised Cross-lingual Representation Learning at Scale\",\n author = \"Conneau, Alexis and\n Khandelwal, Kartikay and\n Goyal, Naman and\n Chaudhary, Vishrav and\n Wenzek, Guillaume and\n Guzm{'a}n, Francisco and\n Grave, Edouard and\n Ott, Myle and\n Zettlemoyer, Luke and\n Stoyanov, Veselin\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.747\",\n doi = \"10.18653/v1/2020.acl-main.747\",\n pages = \"8440--8451\",\n abstract = \"This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6{\\%} average accuracy on XNLI, +13{\\%} average F1 score on MLQA, and +2.4{\\%} F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7{\\%} in XNLI accuracy for Swahili and 11.4{\\%} for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code and models publicly available.\",\n}\n@inproceedings{wenzek-etal-2020-ccnet,\n title = \"{CCN}et: Extracting High Quality Monolingual Datasets from Web Crawl Data\",\n author = \"Wenzek, Guillaume and\n Lachaux, Marie-Anne and\n Conneau, Alexis and\n Chaudhary, Vishrav and\n Guzm{'a}n, Francisco and\n Joulin, Armand and\n Grave, Edouard\",\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.494\",\n pages = \"4003--4012\",\n abstract = \"Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "http://data.statmt.org/cc-100/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "cc100", "config_name": "am", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 935440775, "num_examples": 3124561, "dataset_name": "cc100"}}, "download_checksums": {"http://data.statmt.org/cc-100/am.txt.xz": {"num_bytes": 138821056, "checksum": "97102e1118dee22103349ca38315aecee8cdcc62cb7d7f70d803d37c73525cf5"}}, "download_size": 138821056, "post_processing_size": null, "dataset_size": 935440775, "size_in_bytes": 1074261831}, "sr": {"description": "This corpus is an attempt to recreate the dataset used for training XLM-R. This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages (indicated by *_rom). This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository. No claims of intellectual property are made on the work of preparation of the corpus.\n", "citation": "@inproceedings{conneau-etal-2020-unsupervised,\n title = \"Unsupervised Cross-lingual Representation Learning at Scale\",\n author = \"Conneau, Alexis and\n Khandelwal, Kartikay and\n Goyal, Naman and\n Chaudhary, Vishrav and\n Wenzek, Guillaume and\n Guzm{'a}n, Francisco and\n Grave, Edouard and\n Ott, Myle and\n Zettlemoyer, Luke and\n Stoyanov, Veselin\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.747\",\n doi = \"10.18653/v1/2020.acl-main.747\",\n pages = \"8440--8451\",\n abstract = \"This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6{\\%} average accuracy on XNLI, +13{\\%} average F1 score on MLQA, and +2.4{\\%} F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7{\\%} in XNLI accuracy for Swahili and 11.4{\\%} for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code and models publicly available.\",\n}\n@inproceedings{wenzek-etal-2020-ccnet,\n title = \"{CCN}et: Extracting High Quality Monolingual Datasets from Web Crawl Data\",\n author = \"Wenzek, Guillaume and\n Lachaux, Marie-Anne and\n Conneau, Alexis and\n Chaudhary, Vishrav and\n Guzm{'a}n, Francisco and\n Joulin, Armand and\n Grave, Edouard\",\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.494\",\n pages = \"4003--4012\",\n abstract = \"Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "http://data.statmt.org/cc-100/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "cc100", "config_name": "sr", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10299427460, "num_examples": 35747957, "dataset_name": "cc100"}}, "download_checksums": {"http://data.statmt.org/cc-100/sr.txt.xz": {"num_bytes": 1578989320, "checksum": "e90b3df3955f7da69ccf2dd703aa89e54a4b05ee9a1e6f2bf9b34f11f11b4262"}}, "download_size": 1578989320, "post_processing_size": null, "dataset_size": 10299427460, "size_in_bytes": 11878416780}}
dummy/am/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:964274916a3ee6b0e547ac96839a4c133ce3cd9ffd4a62f3e72bb1799df51616
3
+ size 736
dummy/sr/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ed52b389ff75e39fef4bcc5b638b4c9ef221c7967531851d3ff0b7691ac316f
3
+ size 857