import re import sys import numpy as np from collections import defaultdict from pathlib import Path from tabulate import tabulate # pattern = "bert-tiny-historic-multilingual-cased-*" # sys.argv[1] pattern = sys.argv[1] log_dirs = Path("./").rglob(f"{pattern}") dev_results = defaultdict(list) test_results = defaultdict(list) for log_dir in log_dirs: training_log = log_dir / "training.log" if not training_log.exists(): print(f"No training.log found in {log_dir}") matches = re.match(".*(bs.*?)-(ws.*?)-(e.*?)-(lr.*?)-layers-1-crfFalse-(\d+)", str(log_dir)) batch_size = matches.group(1) ws = matches.group(2) epochs = matches.group(3) lr = matches.group(4) seed = matches.group(5) result_identifier = f"{ws}-{batch_size}-{epochs}-{lr}" with open(training_log, "rt") as f_p: all_dev_results = [] for line in f_p: line = line.rstrip() if "f1-score (micro avg)" in line: dev_result = line.split(" ")[-1] all_dev_results.append(dev_result) # dev_results[result_identifier].append(dev_result) if "F-score (micro" in line: test_result = line.split(" ")[-1] test_results[result_identifier].append(test_result) best_dev_result = max([float(value) for value in all_dev_results]) dev_results[result_identifier].append(best_dev_result) mean_dev_results = {} print("Debug:", dev_results) for dev_result in dev_results.items(): result_identifier, results = dev_result mean_result = np.mean([float(value) for value in results]) mean_dev_results[result_identifier] = mean_result print("Averaged Development Results:") sorted_mean_dev_results = dict(sorted(mean_dev_results.items(), key=lambda item: item[1], reverse=True)) for mean_dev_config, score in sorted_mean_dev_results.items(): print(f"{mean_dev_config} : {round(score * 100, 2)}") best_dev_configuration = max(mean_dev_results, key=mean_dev_results.get) print("Markdown table:") print("") print("Best configuration:", best_dev_configuration) print("\n") print("Best Development Score:", round(mean_dev_results[best_dev_configuration] * 100, 2)) print("\n") header = ["Configuration"] + [f"Run {i + 1}" for i in range(len(dev_results[best_dev_configuration]))] + ["Avg."] table = [] for mean_dev_config, score in sorted_mean_dev_results.items(): current_std = np.std(dev_results[mean_dev_config]) current_row = [f"`{mean_dev_config}`", *[round(res * 100, 2) for res in dev_results[mean_dev_config]], f"{round(score * 100, 2)} ± {round(current_std * 100, 2)}"] table.append(current_row) print(tabulate(table, headers=header, tablefmt="github") + "\n")