stefan-it commited on
Commit
a4882cd
·
verified ·
1 Parent(s): ca07720

data: add notebook for creating dataset splits

Browse files
Files changed (1) hide show
  1. CreateDatasetSplits.ipynb +232 -0
CreateDatasetSplits.ipynb ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "42ac3dd1-7154-40ec-ae54-38e4389c5ea8",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import os\n",
11
+ "import random\n",
12
+ "import requests\n",
13
+ "import zipfile\n",
14
+ "\n",
15
+ "from io import BytesIO"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "code",
20
+ "execution_count": 2,
21
+ "id": "1ba83fb8-8c38-427e-83c1-68da2b5b4bbd",
22
+ "metadata": {},
23
+ "outputs": [
24
+ {
25
+ "name": "stdout",
26
+ "output_type": "stream",
27
+ "text": [
28
+ "Downloading dataset from https://coltekin.github.io/offensive-turkish/offenseval2020-turkish.zip\n",
29
+ "Extracting files to './'...\n",
30
+ "Extracted files: ['offenseval2020-turkish/', 'offenseval2020-turkish/offenseval-tr-training-v1/', 'offenseval2020-turkish/offenseval-tr-training-v1/offenseval-annotation.txt', 'offenseval2020-turkish/offenseval-tr-training-v1/offenseval-tr-training-v1.tsv', 'offenseval2020-turkish/offenseval-tr-training-v1/readme-trainingset-tr.txt', 'offenseval2020-turkish/offenseval-tr-testset-v1/', 'offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-testset-v1.tsv', 'offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-labela-v1.tsv', 'offenseval2020-turkish/README.txt']\n"
31
+ ]
32
+ }
33
+ ],
34
+ "source": [
35
+ "def download_and_extract_zip(url, extract_to=\"./\"):\n",
36
+ " try:\n",
37
+ " print(f\"Downloading dataset from {url}\")\n",
38
+ " response = requests.get(url)\n",
39
+ " response.raise_for_status()\n",
40
+ "\n",
41
+ " with zipfile.ZipFile(BytesIO(response.content)) as z:\n",
42
+ " print(f\"Extracting files to '{extract_to}'...\")\n",
43
+ " z.extractall(extract_to)\n",
44
+ " extracted_files = z.namelist()\n",
45
+ " print(f\"Extracted files: {extracted_files}\")\n",
46
+ " except Exception as e:\n",
47
+ " print(f\"An error occurred: {e}\")\n",
48
+ "\n",
49
+ "url = \"https://coltekin.github.io/offensive-turkish/offenseval2020-turkish.zip\" # Replace with the actual URL\n",
50
+ "download_and_extract_zip(url, \"./\")"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": 3,
56
+ "id": "b74682a7-ccf8-44ad-98a0-73636c35e10e",
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "original_train_file = \"./offenseval2020-turkish/offenseval-tr-training-v1/offenseval-tr-training-v1.tsv\"\n",
61
+ "original_test_file = \"./offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-testset-v1.tsv\"\n",
62
+ "orginal_label_test_file = \"./offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-labela-v1.tsv\""
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": 4,
68
+ "id": "af3ba702-1341-4e70-8c74-87078eeaddf1",
69
+ "metadata": {},
70
+ "outputs": [],
71
+ "source": [
72
+ "def get_instances(filename: str):\n",
73
+ " instances = []\n",
74
+ " with open(filename, \"rt\") as f_p:\n",
75
+ " for line in f_p:\n",
76
+ " line = line.strip()\n",
77
+ " \n",
78
+ " if not line:\n",
79
+ " continue\n",
80
+ " \n",
81
+ " if line.startswith(\"id\"):\n",
82
+ " continue\n",
83
+ " \n",
84
+ " _, tweet, label = line.split(\"\\t\")\n",
85
+ "\n",
86
+ " instances.append([label, tweet])\n",
87
+ "\n",
88
+ " print(f\"Found {len(instances)} training instances.\")\n",
89
+ "\n",
90
+ " return instances"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": 5,
96
+ "id": "a397f04d-354c-4d97-9f93-794929c5e51d",
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "def get_test_instances(filename: str, label_filename: str):\n",
101
+ " # E.g. 41993,NOT is mapped to \"41993\" -> \"NOT\"\n",
102
+ " id_label_mapping = {}\n",
103
+ " with open(label_filename, \"rt\") as f_p:\n",
104
+ " for line in f_p:\n",
105
+ " line = line.strip()\n",
106
+ "\n",
107
+ " if not line:\n",
108
+ " continue\n",
109
+ "\n",
110
+ " id_, label = line.split(\",\")\n",
111
+ "\n",
112
+ " id_label_mapping[id_] = label\n",
113
+ "\n",
114
+ " print(f\"Found {len(id_label_mapping)} labelled test instances\")\n",
115
+ "\n",
116
+ " instances = []\n",
117
+ " \n",
118
+ " with open(filename, \"rt\") as f_p:\n",
119
+ " for line in f_p:\n",
120
+ " line = line.strip()\n",
121
+ " \n",
122
+ " if not line:\n",
123
+ " continue\n",
124
+ " \n",
125
+ " if line.startswith(\"id\"):\n",
126
+ " continue\n",
127
+ " \n",
128
+ " id_, tweet = line.split(\"\\t\")\n",
129
+ "\n",
130
+ " label = id_label_mapping[id_]\n",
131
+ "\n",
132
+ " instances.append([label, tweet])\n",
133
+ " return instances\n",
134
+ "\n",
135
+ " assert len(id_label_mapping) == len(instances)"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": 6,
141
+ "id": "06508ca8-649b-44ea-a8c6-09c2c2b434f4",
142
+ "metadata": {},
143
+ "outputs": [
144
+ {
145
+ "name": "stdout",
146
+ "output_type": "stream",
147
+ "text": [
148
+ "Found 31756 training instances.\n",
149
+ "Found 3528 labelled test instances\n"
150
+ ]
151
+ }
152
+ ],
153
+ "source": [
154
+ "original_train_instances = get_instances(original_train_file)\n",
155
+ "original_test_instances = get_test_instances(original_test_file, orginal_label_test_file)"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": 7,
161
+ "id": "cd4a7942-42c9-4bdb-9079-c6039ff908c4",
162
+ "metadata": {},
163
+ "outputs": [],
164
+ "source": [
165
+ "# Shuffling is done in-place\n",
166
+ "random.seed(83607)\n",
167
+ "random.shuffle(original_train_instances)"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": 8,
173
+ "id": "6ab61fde-e534-4ffe-9302-f80581e503eb",
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "train_instances = original_train_instances[:30_000]\n",
178
+ "dev_instances = original_train_instances[30_000:]"
179
+ ]
180
+ },
181
+ {
182
+ "cell_type": "code",
183
+ "execution_count": 9,
184
+ "id": "84f9c044-7906-4c04-9154-70e2b8d55982",
185
+ "metadata": {},
186
+ "outputs": [],
187
+ "source": [
188
+ "def write_instances(instances: str, split_name: str):\n",
189
+ " with open(f\"{split_name}.txt\", \"wt\") as f_out:\n",
190
+ " for instance in instances:\n",
191
+ " label, tweet = instance\n",
192
+ "\n",
193
+ " # We stick to Flair format for classification tasks, which is basically FastText inspired ;)\n",
194
+ " new_label = \"__label__\" + label\n",
195
+ " f_out.write(f\"{new_label} {tweet}\\n\")"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": 10,
201
+ "id": "0bf06e96-2b25-46ed-8a7e-0672e7aa6af8",
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "write_instances(train_instances, \"train\")\n",
206
+ "write_instances(dev_instances, \"dev\")\n",
207
+ "write_instances(original_test_instances, \"test\")"
208
+ ]
209
+ }
210
+ ],
211
+ "metadata": {
212
+ "kernelspec": {
213
+ "display_name": "Python 3 (ipykernel)",
214
+ "language": "python",
215
+ "name": "python3"
216
+ },
217
+ "language_info": {
218
+ "codemirror_mode": {
219
+ "name": "ipython",
220
+ "version": 3
221
+ },
222
+ "file_extension": ".py",
223
+ "mimetype": "text/x-python",
224
+ "name": "python",
225
+ "nbconvert_exporter": "python",
226
+ "pygments_lexer": "ipython3",
227
+ "version": "3.12.3"
228
+ }
229
+ },
230
+ "nbformat": 4,
231
+ "nbformat_minor": 5
232
+ }