Datasets:
File size: 5,173 Bytes
02997e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""NordicDSL: A language identification datasets for Nordic languages"""
import csv
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{haas-derczynski-2021-discriminating,
title = "Discriminating Between Similar Nordic Languages",
author = "Haas, Ren{\'e} and
Derczynski, Leon",
booktitle = "Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.vardial-1.8",
pages = "67--75",
}
"""
_DESCRIPTION = """\
Automatic language identification is a challenging problem. Discriminating
between closely related languages is especially difficult. This paper presents
a machine learning approach for automatic language identification for the
Nordic languages, which often suffer miscategorisation by existing
state-of-the-art tools. Concretely we will focus on discrimination between six
Nordic languages: Danish, Swedish, Norwegian (Nynorsk), Norwegian (Bokmål),
Faroese and Icelandic.
This is the data for the tasks. Two variants are provided: 10K and 50K, with
holding 10,000 and 50,000 examples for each language respectively.
"""
_URLS = {
"10K": "nordic_dsl_10000",
"50K": "nordic_dsl_50000",
}
class NordicLangIdConfig(datasets.BuilderConfig):
"""BuilderConfig for NordicLangId"""
def __init__(self, **kwargs):
"""BuilderConfig NordicLangId.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(NordicLangIdConfig, self).__init__(**kwargs)
class NordicLangId(datasets.GeneratorBasedBuilder):
"""NordicLangId dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
NordicLangIdConfig(
name="10k",
description="Data for distinguishing between similar Nordic languages: 10k examples per class",
version=VERSION,
),
NordicLangIdConfig(
name="50k",
description="Data for distinguishing between similar Nordic languages: 50k examples per class",
version=VERSION,
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"sentence": datasets.Value("string"),
"language": datasets.features.ClassLabel(
names=[
"dk",
"sv",
"nb",
"nn",
"fo",
"is",
]
),
}
),
supervised_keys=None,
homepage="https://aclanthology.org/2021.vardial-1.8/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "10k":
downloaded_train = dl_manager.download(_URLS["10K"] + 'train.csv')
downloaded_test = dl_manager.download(_URLS["10K"] + 'test.csv')
elif self.config.name == "50k":
downloaded_train = dl_manager.download(_URLS["50K"] + 'train.csv')
downloaded_test = dl_manager.download(_URLS["50K"] + 'test.csv')
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_train}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_test}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
for line in f:
line = line.strip()
if not line:
continue
if self.config.name == "10k":
line = line.replace('dataset10000, ', '')
if self.config.name == "50k":
line = line.replace('dataset50000, ', '')
instance = {
"id": str(guid),
"language": line[-2:],
"sentence": line[:-3],
}
yield guid, instance
guid += 1
|