Datasets:

Modalities:
Text
Sub-tasks:
fact-checking
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 5,250 Bytes
707668c
 
 
 
 
2976c0c
707668c
2976c0c
707668c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: RumourEval 2019
size_categories:
- 10K<n<100K
source_datasets: []
task_categories:
- text-classification
task_ids:
- fact-checking
- text-classification-other-stance-detection
---



# Dataset Card for "rumoureval_2019"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://competitions.codalab.org/competitions/19938](https://competitions.codalab.org/competitions/19938)
- **Repository:** [https://figshare.com/articles/dataset/RumourEval_2019_data/8845580](https://figshare.com/articles/dataset/RumourEval_2019_data/8845580)
- **Paper:** [https://aclanthology.org/S19-2147/](https://aclanthology.org/S19-2147/), [https://arxiv.org/abs/1809.06683](https://arxiv.org/abs/1809.06683)
- **Point of Contact:** [Leon Derczynski](https://github.com/leondz)
- **Size of downloaded dataset files:** 
- **Size of the generated dataset:** 
- **Total amount of disk used:**  

### Dataset Summary

Stance prediction task in English. The goal is to predict whether a given reply to a claim either supports, denies, questions, or simply comments on the claim. Ran as a SemEval task in 2019.

### Supported Tasks and Leaderboards

* SemEval 2019 task 1

### Languages

English of various origins, bcp47: `en`

## Dataset Structure

### Data Instances

#### polstance

An example of 'train' looks as follows.

```
{
	'id': '0', 
	'source_text': 'Appalled by the attack on Charlie Hebdo in Paris, 10 - probably journalists - now confirmed dead. An attack on free speech everywhere.', 
	'reply_text': '@m33ryg @tnewtondunn @mehdirhasan Of course it is free speech, that\'s the definition of "free speech" to openly make comments or draw a pic!', 
	'label': 3
}
```


### Data Fields

- `id`: a `string` feature.
- `source_text`: a `string` expressing a claim/topic.
- `reply_text`: a `string` to be classified for its stance to the source.
- `label`: a class label representing the stance the text expresses towards the target. Full tagset with indices:

```
                            0: "support",
                            1: "deny",
                            2: "query",
                            3: "comment"
```
- `quoteID`: a `string` of the internal quote ID.
- `party`: a `string` describing the party affiliation of the quote utterer at the time of utterance.
- `politician`: a `string` naming the politician who uttered the quote.

### Data Splits

|  name   |instances|
|---------|----:|
|train|7 005|
|dev|2 425|
|test|2 945|

## Dataset Creation

### Curation Rationale


### Source Data

#### Initial Data Collection and Normalization


#### Who are the source language producers?

Twitter users

### Annotations

#### Annotation process

Detailed in [Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads](https://journals.plos.org/plosone/article/authors?id=10.1371/journal.pone.0150989)

#### Who are the annotators?


### Personal and Sensitive Information


## Considerations for Using the Data

### Social Impact of Dataset


### Discussion of Biases


### Other Known Limitations

## Additional Information

### Dataset Curators

The dataset is curated by the paper's authors.

### Licensing Information

The authors distribute this data under Creative Commons attribution license, CC-BY 4.0. 

### Citation Information

```
@inproceedings{gorrell-etal-2019-semeval,
    title = "{S}em{E}val-2019 Task 7: {R}umour{E}val, Determining Rumour Veracity and Support for Rumours",
    author = "Gorrell, Genevieve  and
      Kochkina, Elena  and
      Liakata, Maria  and
      Aker, Ahmet  and
      Zubiaga, Arkaitz  and
      Bontcheva, Kalina  and
      Derczynski, Leon",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2147",
    doi = "10.18653/v1/S19-2147",
    pages = "845--854",
}
```


### Contributions

Author-added dataset [@leondz](https://github.com/leondz)