File size: 4,601 Bytes
b23e491 54d993a b23e491 43582b1 b23e491 54d993a b23e491 54d993a b23e491 e84d939 b23e491 e84d939 23b3394 e84d939 23b3394 e84d939 29416b6 e9ed860 e84d939 23b3394 e84d939 23b3394 e84d939 23b3394 e84d939 b23e491 e84d939 b23e491 e84d939 fb2d2c0 e84d939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
pretty_name: QReCC
language_creators:
- expert-generated
- found
languages:
- en
licenses:
- cc-by-3.0
multilinguality:
- monolingual
source_datasets:
- extended|natural_questions
- extended|quac
task_categories:
- question-answering
task_ids:
- open-domain-qa
---
# Dataset Card for QReCC: Question Rewriting in Conversational Context
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- [**Repository:**](https://github.com/apple/ml-qrecc)
- [**Paper:**](https://arxiv.org/pdf/2010.04898.pdf)
### Dataset Summary
QReCC (Question Rewriting in Conversational Context) is an end-to-end open-domain question answering dataset comprising of 14K conversations with 81K question-answer pairs. The goal of this dataset is to provide a challenging benchmark for end-to-end conversational question answering that includes the individual subtasks of question rewriting, passage retrieval and reading comprehension.
The task in QReCC is to find answers to conversational questions within a collection of 10M web pages split into 54M passages. Answers to questions in the same conversation may be distributed across several web pages.
The passage collection should be downloaded from [**Zenodo**](https://zenodo.org/record/5115890#.YaeD7C8RppR) (passages.zip)
### Supported Tasks and Leaderboards
`question-answering`
### Languages
English
## Dataset Structure
### Data Instances
An example from the data set looks as follows:
```
{
"Context": [
"What are the pros and cons of electric cars?",
"Some pros are: They're easier on the environment. Electricity is cheaper than gasoline. Maintenance is less frequent and less expensive. They're very quiet. You'll get tax credits. They can shorten your commute time. Some cons are: Most EVs have pretty short ranges. Recharging can take a while."
],
"Question": "Tell me more about Tesla",
"Rewrite": "Tell me more about Tesla the car company.",
"Answer": "Tesla Inc. is an American automotive and energy company based in Palo Alto, California. The company specializes in electric car manufacturing and, through its SolarCity subsidiary, solar panel manufacturing.",
"Answer_URL": "https://en.wikipedia.org/wiki/Tesla,_Inc.",
"Conversation_no": 74,
"Turn_no": 2,
"Conversation_source": "trec"
}
```
### Data Fields
[More Information Needed]
### Data Splits
- train: 63501
- test: 16451
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
- QuAC
- TREC CAsT
- Natural Questions
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[CC BY-SA 3.0](http://creativecommons.org/licenses/by-sa/3.0/)
### Citation Information
```
@inproceedings{ qrecc,
title={Open-Domain Question Answering Goes Conversational via Question Rewriting},
author={Anantha, Raviteja and Vakulenko, Svitlana and Tu, Zhucheng and Longpre, Shayne and Pulman, Stephen and Chappidi, Srinivas},
booktitle={ NAACL },
year={2021}
}
```
### Contributions
[More Information Needed] |