search_space = ps( # svm svm.kernel = p_fct(levels = c("linear", "polynomial", "radial")), svm.cost = p_dbl(lower = -10, upper = 10, tags = "log", trafo = function(x) exp(x)), svm.gamma = p_dbl(lower = -10, upper = 10, tags = "log", trafo = function(x) exp(x), depends = svm.kernel == "radial"), svm.tolerance = p_dbl(lower = -10, upper = log(2), tags = "log", trafo = function(x) exp(x)), svm.degree = p_int(lower = 2L, upper = 5L, depends = svm.kernel == "polynomial"), # glmnet glmnet.alpha = p_dbl(lower = 0, upper = 1), glmnet.s = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)), # rpart rpart.cp = p_dbl(lower = -7, upper = 0, tags = "log", trafo = function(x) exp(x)), rpart.maxdepth = p_int(lower = 1L, upper = 30L), rpart.minbucket = p_int(lower = 1L, upper = 100L), rpart.minsplit = p_int(lower = 1L, upper = 100L), # ranger ranger.num.trees = p_int(lower = 1L, upper = 2000L), ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1), ranger.mtry.power = p_int(lower = 0, upper = 1), ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition")), ranger.min.node.size = p_int(lower = 1L, upper = 100L), ranger.splitrule = p_fct(levels = c("gini", "extratrees")), ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees"), # aknn aknn.k = p_int(lower = 1L, upper = 50L), aknn.distance = p_fct(levels = c("l2", "cosine", "ip")), aknn.M = p_int(lower = 18L, upper = 50L), aknn.ef = p_dbl(lower = 2, upper = 6, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))), aknn.ef_construction = p_dbl(lower = 2, upper = 7, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))), # xgboost xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart")), xgboost.nrounds = p_dbl(lower = 2, upper = 8, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))), xgboost.eta = p_dbl(lower = -7, upper = 0, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.gamma = p_dbl(lower = -10, upper = 2, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.lambda = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)), xgboost.alpha = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)), xgboost.subsample = p_dbl(lower = 0.1, upper = 1), xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.min_child_weight = p_dbl(lower = 1, upper = 5, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"), xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"), trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"), repl = p_int(lower = 1L, upper = 10L, tags = "budget"), num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")), learner_id = p_fct(levels = c("aknn", "glmnet", "ranger", "rpart", "svm", "xgboost")), task_id = p_fct(levels = c("41138", "40981", "4134", "1220", "4154", "41163", "4538", "40978", "375", "1111", "40496", "40966", "4534", "40900", "40536", "41156", "1590", "1457", "458", "469", "41157", "11", "1461", "1462", "1464", "15", "40975", "41142", "40701", "40994", "23", "1468", "40668", "29", "31", "6332", "37", "40670", "23381", "151", "188", "41164", "1475", "1476", "1478", "41169", "1479", "41212", "1480", "300", "41143", "1053", "41027", "1067", "1063", "41162", "3", "6", "1485", "1056", "12", "14", "16", "18", "40979", "22", "1515", "334", "24", "1486", "1493", "28", "1487", "1068", "1050", "1049", "32", "1489", "470", "1494", "182", "312", "40984", "1501", "40685", "38", "42", "44", "46", "40982", "1040", "41146", "377", "40499", "50", "54", "307", "1497", "60", "1510", "40983", "40498", "181"), tags = "task_id" ) ) # Add dependencies map(search_space$params$learner_id$levels, function(x) { nms = names(search_space$params)[startsWith(names(search_space$params), x)] map(nms, function(nm) search_space$add_dep(nm, "learner_id", CondEqual$new(x))) }) domain = ps( # svm svm.kernel = p_fct(levels = c("linear", "polynomial", "radial")), svm.cost = p_dbl(lower = exp(-10), upper = exp(10)), svm.gamma = p_dbl(lower = exp(-10), upper = exp(10), depends = svm.kernel == "radial"), svm.tolerance = p_dbl(lower = exp(-10), upper = 2), svm.degree = p_int(lower = 2L, upper = 5L, depends = svm.kernel == "polynomial"), # glmnet glmnet.alpha = p_dbl(lower = 0, upper = 1), glmnet.s = p_dbl(lower = exp(-7), upper = exp(7)), # rpart rpart.cp = p_dbl(lower = exp(-7), upper = exp(0)), rpart.maxdepth = p_int(lower = 1L, upper = 30L), rpart.minbucket = p_int(lower = 1L, upper = 100L), rpart.minsplit = p_int(lower = 1L, upper = 100L), # ranger ranger.num.trees = p_int(lower = 1L, upper = 2000L), ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1), ranger.mtry.power = p_dbl(lower = 0, upper = 1), ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition")), ranger.min.node.size = p_int(lower = 1L, upper = 100L), ranger.splitrule = p_fct(levels = c("gini", "extratrees")), ranger.num.random.splits = p_int(lower = 1, upper = 100L, depends = ranger.splitrule == "extratrees"), # aknn aknn.k = p_int(lower = 1L, upper = 50L), aknn.distance = p_fct(levels = c("l2", "cosine", "ip")), aknn.M = p_int(lower = 18L, upper = 50L), aknn.ef = p_int(lower = 7L, upper = 403L), aknn.ef_construction = p_int(lower = 7L, upper = 403L), # xgboost xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart")), xgboost.nrounds = p_int(lower = 7L, upper = 2981L), xgboost.eta = p_dbl(lower = exp(-7), upper = exp(0),depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.gamma = p_dbl(lower = exp(-10), upper = exp(2), depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.lambda = p_dbl(lower = exp(-7), upper = exp(7)), xgboost.alpha = p_dbl(lower = exp(-7), upper = exp(7)), xgboost.subsample = p_dbl(lower = 0.1, upper = 1), xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.min_child_weight = p_dbl(lower = exp(1), upper = exp(5), depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")), xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"), xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"), # learner_id trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"), repl = p_int(lower = 1L, upper = 10L, tags = "budget"), num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")), learner_id = p_fct(levels = c("aknn", "glmnet", "ranger", "rpart", "svm", "xgboost")), task_id = p_fct(levels = c("41138", "40981", "4134", "1220", "4154", "41163", "4538", "40978", "375", "1111", "40496", "40966", "4534", "40900", "40536", "41156", "1590", "1457", "458", "469", "41157", "11", "1461", "1462", "1464", "15", "40975", "41142", "40701", "40994", "23", "1468", "40668", "29", "31", "6332", "37", "40670", "23381", "151", "188", "41164", "1475", "1476", "1478", "41169", "1479", "41212", "1480", "300", "41143", "1053", "41027", "1067", "1063", "41162", "3", "6", "1485", "1056", "12", "14", "16", "18", "40979", "22", "1515", "334", "24", "1486", "1493", "28", "1487", "1068", "1050", "1049", "32", "1489", "470", "1494", "182", "312", "40984", "1501", "40685", "38", "42", "44", "46", "40982", "1040", "41146", "377", "40499", "50", "54", "307", "1497", "60", "1510", "40983", "40498", "181"), tags = "task_id" ) ) # Add dependencies map(domain$params$learner_id$levels, function(x) { nms = names(domain$params)[startsWith(names(domain$params), x)] map(nms, function(nm) domain$add_dep(nm, "learner_id", CondEqual$new(x))) }) codomain = ps( acc = p_dbl(lower = 0, upper = 1, tags = "maximize"), bac = p_dbl(lower = 0, upper = 1, tags = "maximize"), f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"), auc = p_dbl(lower = 0, upper = 1, tags = "maximize"), brier = p_dbl(lower = 0, upper = 1, tags = "minimize"), logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"), timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"), timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"), memory = p_dbl(lower = 0, upper = Inf, tags = "minimize") )