File size: 27,185 Bytes
8453f96 03bcb43 8453f96 87d59b4 e5af3c1 59a70ca 8453f96 d262e6f 8453f96 dbf2014 8453f96 dbf2014 8453f96 dbf2014 8453f96 be8b808 8453f96 be8b808 6a23009 d262e6f be8b808 dbf2014 5377ed8 8453f96 0a3368a 8453f96 87d59b4 e572ba6 87d59b4 dbf2014 8453f96 0a3368a 8453f96 dbf2014 b0d21d5 6a23009 b0d21d5 2a180d8 b0d21d5 d262e6f b0d21d5 8453f96 b0d21d5 8453f96 b0d21d5 8453f96 b0d21d5 d262e6f b0d21d5 6a23009 b0d21d5 d262e6f b0d21d5 d262e6f b0d21d5 d262e6f b0d21d5 470476a b0d21d5 6a23009 b0d21d5 6a23009 b0d21d5 d262e6f b0d21d5 8453f96 b0d21d5 8453f96 b0d21d5 8453f96 b0d21d5 6a23009 b0d21d5 8453f96 b0d21d5 cf2b634 b0d21d5 59a70ca 470476a b0d21d5 aca0f6d b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 3555211 aca0f6d b0d21d5 aca0f6d b0d21d5 aca0f6d b0d21d5 6a23009 b0d21d5 6a23009 b0d21d5 aca0f6d b0d21d5 aca0f6d 59a70ca b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 59a70ca b0d21d5 aca0f6d b0d21d5 aca0f6d b0d21d5 aca0f6d dbf2014 b0d21d5 470476a b0d21d5 470476a b0d21d5 470476a b0d21d5 470476a b0d21d5 470476a b0d21d5 470476a b0d21d5 470476a dbf2014 b0d21d5 eda7501 b0d21d5 eda7501 b0d21d5 eda7501 b0d21d5 eda7501 b0d21d5 eda7501 b0d21d5 eda7501 dbf2014 b0d21d5 cf2b634 b0d21d5 47341b7 dbf2014 b0d21d5 0c45ea8 b0d21d5 0c45ea8 cf2b634 b0d21d5 cf2b634 2a180d8 b0d21d5 cf2b634 b0d21d5 cf2b634 b0d21d5 cf2b634 b0d21d5 cf2b634 b0d21d5 2a180d8 8453f96 b0d21d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
# Copyright 2020 The HuggingFace Datasets Authors.
# Copyright 2023 Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import itertools
import math
from sympy.combinatorics.permutations import Permutation
import datasets
import numpy as np
from copy import copy
# check python version
import sys
major, minor = sys.version_info[:2]
version = major + 0.1*minor
OLD_PY_VERSION = 1 if version < 3.8 else 0
_CITATION = """\
@article{liu2022transformers,
title={Transformers learn shortcuts to automata},
author={Liu, Bingbin and Ash, Jordan T and Goel, Surbhi and Krishnamurthy, Akshay and Zhang, Cyril},
journal={arXiv preprint arXiv:2210.10749},
year={2022}
}
"""
_DESCRIPTION = """\
Non-autoregressive automaton simulation datasets.
"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {}
class AutomatonDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIGS = []
def __init__(self, config={}, **kwargs):
super().__init__(**kwargs)
"""
Set default configs
"""
if 'name' not in config:
config['name'] = 'parity'
# if 'length' not in config: # sequence length
# config['length'] = 20
if 'size' not in config: # number of sequences
config['size'] = -1
self.data_config = config
self.automaton = dataset_map[config['name']](config)
def _info(self):
features = datasets.Features(
{
"input_ids": datasets.Sequence(datasets.Value("int32"), length=-1),
"label_ids": datasets.Sequence(datasets.Value("int32"), length=-1)
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
},
)
]
def _generate_examples(self, split):
for i in itertools.count(start=0):
if i == self.data_config['size']:
break
x, y = self.automaton.sample()
yield i, {
"input_ids": x,
"label_ids": y
}
class Automaton:
"""
This is a parent class that must be inherited.
"""
def __init__(self, data_config):
self.data_config = data_config
if 'seed' in self.data_config:
self.np_rng = np.random.default_rng(self.data_config['seed'])
else:
self.np_rng = np.random.default_rng()
if 'length' not in data_config: # sequence length
data_config['length'] = 20
self.T = self.data_config['length']
if 'random_length' not in data_config:
data_config['random_length'] = 0
self.random_length = data_config['random_length']
self.__info__ = \
" - T (int): sequence length.\n" \
+ " - random_length (int in {0, 1}): whether to randomly sample a length per sample.\n"
def f(self, x):
"""
Get output sequence given an input seq
"""
raise NotImplementedError()
def sample(self):
raise NotImplementedError()
def sample_length(self):
if self.random_length:
return self.np_rng.choice(range(1, self.T+1))
return self.T
def help(self):
print(self.__info__)
class BinaryInputAutomaton(Automaton):
"""
This is a parent class that must be inherited.
Subclasses: ParityAutomaton, GridworldAutomaton, ABABAutomaton
TODO: sample sequences with a given number of 1s
"""
def __init__(self, data_config):
super().__init__(data_config)
if 'prob1' not in data_config:
data_config['prob1'] = 0.5
self.prob1 = data_config['prob1']
self.__info__ = " - prob1 (float in [0,1]): probability of token 1\n" \
+ self.__info__
def f(self, x):
raise NotImplementedError()
def sample(self):
T = self.sample_length()
x = self.np_rng.binomial(1, self.prob1, size=T)
return x, self.f(x)
class ParityAutomaton(BinaryInputAutomaton):
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'parity'
self.__info__ = "Parity machine with 2 states: \n" \
+ "- Inputs: binary strings\n" \
+ "- Labels: binary strings of the partial parity\n" \
+ "- Config: \n" \
+ self.__info__
def f(self, x):
return np.cumsum(x) % 2
class GridworldAutomaton(BinaryInputAutomaton):
"""
Note: gridworld currently doesn't include a no-op.
"""
def __init__(self, data_config):
super().__init__(data_config)
if 'n' not in data_config:
data_config['n'] = 9
"""
NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state.
i.e. the states are 0,1,2,...,S, where S=n-1.
"""
self.n = data_config['n']
self.S = self.n - 1
if 'label_type' not in data_config:
# Options: state, parity, boundary
data_config['label_type'] = 'state'
self.label_type = data_config['label_type']
self.name = f'Grid{self.n}'
self.__info__ = f"1d Gridworld of n={self.n} states:\n" \
+ "- Inputs: binary strings, i.e. move left(0) or right(1)\n" \
+ "- Labels: depending on 'label_type'. \n" \
+ "- Config: \n" \
+ " - n (int): number of states; i.e. the states are 0,1,2,...,n-1.\n" \
+ " - label_type (str): choosing from the following options:\n" \
+ " - 'state' (default): the state id, i.e. 0 to n-1.\n" \
+ " - 'parity': the state id mod 2.\n" \
+ " - 'boundary': whether the current state is in {0, n-1} or not.\n" \
+ self.__info__
def f(self, x):
x = copy(x)
x[x == 0] = -1
if OLD_PY_VERSION:
# NOTE: for Python 3.7 or below, accumulate doesn't have the 'initial' argument.
x = np.concatenate([np.array([0]), x]).astype(np.int64)
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0)))
states = states[1:]
else:
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0))
states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
return np.array(states).astype(np.int64)
class ABABAutomaton(BinaryInputAutomaton):
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'abab'
if 'prob_abab_pos_sample' not in data_config:
# The probability of having a positive sequence, i.e. 010101010101...
data_config['prob_abab_pos_sample'] = 0.25
if 'label_type' not in data_config:
# Options: 'state', 'boundary'
data_config['label_type'] = 'state'
self.prob_abab_pos_sample = data_config['prob_abab_pos_sample']
self.label_type = data_config['label_type']
self.transition = np.array([
[4, 1], # state 0
[2, 4], # state 1
[4, 3], # state 2
[0, 4], # state 3
[4, 4], # state 4
])
self.__info__ = "abab: an automaton with 4 states + 1 absorbing state:\n" \
+ "- Inputs: binary strings\n" \
+ "- Labels: depending on 'label_type'.\n" \
+ "- Config:\n" \
+ " - prob_abab_pos_sample (float in [0,1]): probability of having a 'positive' sequence, i.e. 01010101010...\n" \
+ " - label_type (str): choosing from the following options:\n" \
+ " - 'state' (default): the state id.\n" \
+ " - 'boundary': whether the state is in state 3 (the states are 0,1,2,3).\n" \
+ self.__info__
def f(self, x):
labels = []
curr_state = 3
for each in x:
curr_state = self.transition[curr_state, each]
labels += curr_state,
labels = np.array(labels).astype(np.int64)
if self.label_type == 'boundary':
labels = (labels == 3).astype(np.int64)
return labels
def sample(self):
pos_sample = self.np_rng.random() < self.prob_abab_pos_sample
if pos_sample:
T = self.sample_length()
x = [0,1,0,1] * (T//4)
x += [0,1,0,1][:(T%4)]
x = np.array(x)
return x, self.f(x)
else:
return super().sample()
class AdderAutomaton(BinaryInputAutomaton):
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'addition'
if 'n_addends' not in data_config:
data_config['n_addends'] = 2
self.n_addends = data_config['n_addends']
self.addend_scales = np.array([2**i for i in range(self.n_addends)]).reshape(-1, 1)
if 'label_type' not in data_config:
data_config['label_type'] = 'state'
self.label_type = data_config['label_type']
self.__info__ = f'Adder of n={self.n_addends} binary numbers:\n' \
+f"- Inputs: {self.n_addends} binary numbers, encoded as the int for the {self.n_addends}-bit binary number.\n" \
+ "- Labels: depending on the label_type.\n" \
+ "- Config:\n" \
+ " - n_addends (int): number of binary numbers to be added; default as 2.\n" \
+ " - label_type (str): choosing from the following options: \n" \
+f" - 'state': the state id, i.e. the int for the base-{self.n_addends} int corresponding to the number (carry, digit). \n" \
+f" - 'digit': the current output base-{self.n_addends} digit, without the carry. \n" \
+ " - 'position': the current carry bit.\n" \
+ self.__info__
def f(self, x):
outputs, carries = [], []
carry = 0
T = x.shape[-1]
for i in range(T):
curr_sum = x[:, i].sum() + carry
# NOTE: 'mod n_addends' makes sure the carry is binary
output, carry = curr_sum % self.n_addends, curr_sum // self.n_addends
outputs += output,
carries += carry,
outputs = np.array(outputs).astype(np.int64)
carries = np.array(carries).astype(np.int64)
if self.label_type == 'state':
return outputs + self.n_addends*carries
elif self.label_type == 'digit':
return outputs
elif self.label_type == 'carry':
return carries
def sample_addend(self, T):
a = self.np_rng.binomial(1, self.prob1, size=T)
return a
def sample(self):
T = self.sample_length()
x = np.stack([self.sample_addend(T) for _ in range(self.n_addends)])
# Pad the most significant bit (rightmost position, i.e. we're reversing the number) with 0 to handle the potential carry
pad = np.zeros((self.n_addends, 1))
x = np.concatenate([x, pad], 1)
x_encode = (self.addend_scales * x).sum(0)
return x_encode, self.f(x)
class FlipFlopAutomaton(Automaton):
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'flipflop'
if 'n' not in data_config:
data_config['n'] = 2
self.n_states = data_config['n']
self.n_actions = self.n_states + 1
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T
self.__info__ = f"Flipflop with n={self.n_states} states:\n" \
+f"- Inputs: tokens are either 0 (read) or 1:{self.n} (write).\n" \
+ "- Labels: the state id.\n" \
+ "- Config:\n" \
+ " - n (int): number of write states; i.e. the states are 1,2,...,n, plus a default start state 0.\n" \
+ self.__info__
def f(self, x):
state, states = 0, []
for action_id in x:
state = self.transition[state, action_id]
states += state,
return np.array(states)
def sample(self):
T = self.sample_length()
rand = self.np_rng.uniform(size=T)
nonzero_pos = (rand < 0.5).astype(np.int64)
writes = self.np_rng.choice(range(1, self.n_states+1), size=T)
x = writes * nonzero_pos
return x, self.f(x)
class PermutationAutomaton(Automaton):
"""
This is a parent class that must be inherited.
Subclasses: SymmetricAutomaton, AlternatingAutomaton
"""
def __init__(self, data_config):
super().__init__(data_config)
if 'n' not in data_config:
data_config['n'] = 5
if 'label_type' not in data_config:
# Options: 'state', 'first_chair'
data_config['label_type'] = 'state'
self.n = data_config['n'] # the symmetric group Sn
self.label_type = data_config['label_type']
self.__info__ = \
" - label_type (str): choosing from the following options:\n" \
+ " - 'state' (default): the state id.\n" \
+ " - 'first_chair': the element in the first position of the permutation.\n" \
+ " e.g. if the current permutation is [2,1,4,3], then 'first_chair' is 2.\n" \
+ self.__info__
def get_state_label(self, state):
enc = self.state_encode(state)
return self.state_label_map[enc]
def f(self, x):
curr_state = np.arange(self.n)
labels = []
for action_id in x:
curr_state = self.actions[action_id].dot(curr_state)
if self.label_type == 'state':
labels += self.get_state_label(curr_state),
elif self.label_type == 'first_chair':
labels += curr_state[0],
return np.array(labels)
def sample(self):
T = self.sample_length()
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)
return x, self.f(x)
class SymmetricAutomaton(PermutationAutomaton):
"""
TODO: add options for labels as functions of states
- parity (whether a state is even): this may need packages (e.g. Permutation from sympy)
- position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups.
"""
def __init__(self, data_config):
super().__init__(data_config)
self.name = f'S{self.n}'
"""
Get states
"""
self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
self.state_label_map = {}
for si, state in enumerate(itertools.permutations(range(self.n))):
enc = self.state_encode(state)
self.state_label_map[enc] = si
"""
Get actions (3 defaults: id, shift-by-1, swap-first-two)
"""
if 'n_actions' not in data_config:
data_config['n_actions'] = 3
self.n_actions = data_config['n_actions']
self.actions = {0: np.eye(self.n)}
# shift all elements to the right by 1
shift_idx = list(range(1, self.n)) + [0]
self.actions[1] = np.eye(self.n)[shift_idx]
# swap the first 2 elements
shift_idx = [1, 0] + list(range(2, self.n))
self.actions[2] = np.eye(self.n)[shift_idx]
if self.n_actions > 3:
# add permutations in the order given by itertools.permutations
self.all_permutations = list(itertools.permutations(range(self.n)))[1:]
cnt = 2
for each in self.all_permutations:
action = np.eye(self.n)[list(each)]
if np.linalg.norm(action - self.actions[0]) == 0:
continue
elif np.linalg.norm(action - self.actions[1]) == 0:
continue
self.actions[cnt] = action
cnt += 1
if cnt == self.n_actions: break
self.__info__ = f"Symmetric group on n={self.n} objects:\n" \
+f"- Inputs: tokens are either 0 (no-op), or 1:{self.n_actions} (corresponding to {self.n_actions} permutations).\n" \
+ "- Labels: depending on 'label_type'.\n" \
+ "- Config:\n" \
+ " - n (int): number of objects, i.e. there are n! states.\n" \
+ " - n_actions (int): number of permutations to include in the generator set;\n" \
+ " the ordering is given by itertools.permutations, and the first 'n_actions' permutations will be included.\n" \
+ self.__info__
class AlternatingAutomaton(PermutationAutomaton):
"""
TODO: other choices of generators (currently using (12x))?
"""
def __init__(self, data_config):
super().__init__(data_config)
self.name = f'A{self.n}'
"""
Get states
"""
self.state_label_map = {}
self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
cnt = 0
for si, state in enumerate(itertools.permutations(range(self.n))):
if not Permutation(state).is_even:
continue
enc = self.state_encode(state)
self.state_label_map[enc] = cnt
cnt += 1
"""
Get actions: all 3 cycles of the form (12x)
"""
self.actions = {0: np.eye(self.n)}
for idx in range(2, self.n):
# (1, 2, idx)
shift_idx = list(range(self.n))
shift_idx[0],shift_idx[1], shift_idx[idx] = shift_idx[1], shift_idx[idx], shift_idx[0]
self.actions[idx-1] = np.eye(self.n)[shift_idx]
self.n_actions = len(self.actions)
self.__info__ = f"Alternating group on n={self.n} objects:\n" \
+f"- Inputs: tokens from 0 to n-3, corresponding to all 3-cycles of the form (12x).\n" \
+ "- Labels: depending on 'label_type'.\n" \
+ "- Config:\n" \
+ " - n (int): number of objects, i.e. there are n!/2 states.\n" \
+ self.__info__
class CyclicAutomaton(Automaton):
def __init__(self, data_config):
super().__init__(data_config)
if 'n' not in data_config:
data_config['n'] = 5
self.n = data_config['n']
"""
Get actions: shift by i positions, for i = 0 to n_actions-1
"""
if 'n_actions' not in data_config:
data_config['n_actions'] = 2
self.n_actions = data_config['n_actions']
shift_idx = list(range(1, self.n)) + [0]
self.actions = {}
for i in range(self.n_actions):
shift_idx = list(range(i, self.n)) + list(range(0, i))
self.actions[i] = np.eye(self.n)[shift_idx]
self.__info__ = 'Cyclic group of n={self.n} states:\n' \
+f"- Inputs: tokens from 0 to n_actions-1\n" \
+ "- Labels: the current state.\n" \
+ "- Config:\n" \
+ " - n (int): number of states.\n" \
+ " - n_actions (int): number of actions/generators, which are 0, 1, ..., n_actions-1.\n" \
+ self.__info__
def f(self, x):
return np.cumsum(x) % self.n
def sample(self):
T = self.sample_length()
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)
return x, self.f(x)
class DihedralAutomaton(Automaton):
def __init__(self, data_config):
super().__init__(data_config)
if 'n' not in data_config:
data_config['n'] = 4
self.n = data_config['n']
if 'label_type' not in data_config:
# Options: 'state', 'toggle', 'position'
data_config['label_type'] = 'state'
self.label_type = data_config['label_type']
"""
2 actions: toggle, or shift by 1 position (direction determined by the toggle).
"""
self.n_actions = 2
self.actions = {}
# shift all elements to the left (counter-clockwise) by 1
shift_idx = list(range(1, self.n)) + [0]
self.actions[0] = np.eye(self.n)[shift_idx]
# shift all elements to the right (closewise) by 1
shift_idx = [self.n-1] + list(range(self.n-1))
self.actions[1] = np.eye(self.n)[shift_idx]
self.__info__ = 'Dihedral group of order 2n, where n={self.n}:\n' \
+f"- Inputs: binary tokens:\n" \
+ " 0 for toggle, i.e. change direction in the n-cycle;\n" \
+ " 1 for drive, i.e. move forward 1 step on the n-cycle.\n" \
+ "- Labels: depending on the label_type.\n" \
+ "- Config:\n" \
+ " - n (int): size of the 'cycle'; i.e. there are 2n states considering also the toggle bit.\n" \
+ " - label_type (str): choosing from the following options: \n" \
+ " - 'state': the state id, i.e. considering both toggle and position. \n" \
+ " - 'toggle': the toggle bit (in {0, 1}). \n" \
+ " - 'position': the position on the n-cycle (in [n]).\n" \
+ self.__info__
def f_sequential(self, x):
# sanity check: sequential solution
position = np.arange(self.n)
states = []
toggle = 0 # i.e. parity
for action in x:
if action == 0:
# toggle direction
toggle = 1 - toggle
else:
# drive by 1
position = self.actions[toggle].dot(position)
states += (toggle, position[0]),
return states
def f(self, x):
# Parallel solution
# Get toggles: a parity task on the toggle bit
toggles = (x == 0).astype(np.int64)
toggle_status = np.cumsum(toggles) % 2
# Get positions: a directed modular counter
directions = (-1)**toggle_status
directed_drives = (x != 0).astype(np.int64) * directions
positions = np.cumsum(directed_drives) % self.n
if self.label_type == 'state':
labels = [self.get_state_label(each) for each in zip(toggle_status, positions)]
return np.array(labels).astype(np.int64)
elif self.label_type == 'toggle':
return toggle_status
elif self.label_type == 'positions':
return positions
def get_state_label(self, state):
"""
toggle in {0,1}
position in [k]
"""
toggle, position = state
label = self.n*toggle + position
return label
def sample(self):
T = self.sample_length()
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)
return x, self.f(x)
class QuaternionAutomaton(Automaton):
def __init__(self, data_config):
super().__init__(data_config)
self.n_states = 8 # {-1, 1} x {1, i, j, k}
self.n_actions = 4 # {1, i, j, k}
self.transition_pos = [
0, 1, 2, 3,
1, 4, 3, 6,
2, 7, 4, 1,
3, 2, 5, 4,
]
self.transition_neg = [(each+4)%8 for each in self.transition_pos]
self.transition = np.array(self.transition_pos + self.transition_neg)
self.transition = self.transition.reshape(-1, 4)
self.__info__ = "Quaternion group:\n" \
+ "- Inputs: tokens in {0,1,2,3}, corresponding to 1,i,j,k.\n" \
+ "- Labels: the state id; 8 states in total: 2 signs ({-1,1}) x 4 values ({1,i,j,k}).\n" \
+ "- Config:\n" \
+ self.__info__
def f(self, x):
curr_state = 0
states = []
for action_id in x:
curr_state = self.transition[curr_state, action_id]
states += curr_state,
return np.array(states).astype(np.int64)
def sample(self):
T = self.sample_length()
x = self.np_rng.choice(range(self.n_actions), size=T)
return x, self.f(x)
class PermutationResetAutomaton(Automaton):
def __init__(self, data_config):
super().__init__(data_config)
self.n = data_config['n']
self.generators = data_config['generators']
self.perm_probs = data_config['perm_probs']
if type(self.generators[0]) is str:
self.generators = [ np.array(list(map(int, list(g)))) for g in self.generators ]
self.n_states = math.factorial(self.n) # states = permutations; maybe rename
self.n_generators = len(self.generators) # actions = generators
self.n_actions = self.n_states + self.n_generators # 1 reset symbol per state, 1 apply symbol per generator
self.init_state = np.arange(self.n) # identity permutation
# lookup tables
self.int2perm = list(map(np.array, itertools.permutations(range(self.n))))
self.perm2int = {tuple(p):i for i,p in enumerate(self.int2perm)}
# interval lengths
T = self.sample_length()
self.lags = [1]
while self.lags[-1]*2 < T:
self.lags.append(self.lags[-1]*2)
def f(self, x):
curr_state = self.init_state
states = []
for action_id in x:
if action_id >= self.n_states:
curr_state = self.generators[action_id - self.n_states][curr_state]
else:
curr_state = self.int2perm[action_id]
states.append(self.perm2int[tuple(curr_state)])
return np.array(states, dtype=np.int64)
def sample(self):
T = self.sample_length()
x = self.np_rng.choice(range(self.n_generators), p=self.perm_probs, size=T) + self.n_states
i = 0
while i < T:
x[i] = self.np_rng.choice(range(self.n_states))
i += self.np_rng.choice(self.lags)
return x, self.f(x)
dataset_map = {
'abab': ABABAutomaton,
'add': AdderAutomaton,
'alternating': AlternatingAutomaton,
'cyclic': CyclicAutomaton,
'dihedral': DihedralAutomaton,
'flipflop': FlipFlopAutomaton,
'gridworld': GridworldAutomaton,
'parity': ParityAutomaton,
'quaternion': QuaternionAutomaton,
'symmetric': SymmetricAutomaton,
'permutation_reset': PermutationResetAutomaton
# TODO: add Dyck
}
|