SEN2NAIPv2-real / main.json
csaybar's picture
Upload main.json
ed00f87 verified
raw
history blame
14 kB
{
"type": "Collection",
"stac_version": "1.0.0",
"stac_extensions": [
"https://stac-extensions.github.io/contacts/v0.1.1/schema.json"
],
"id": "SEN2NAIPv2-real",
"description": "<img src='images/taco.png' alt='drawing' width='50%'/>\nThe increasing demand for high spatial resolution in remote sensing imagery has led to the necessity of super-resolution (SR) algorithms that convert low-resolution (LR) images into high-resolution (HR) ones. To address this need, we introduce SEN2NAIP, a large remote sensing dataset designed to support conventional and reference-based SR model. This dataset is a variation of the SEN2NAIP `synthetic large dataset`. We select Sentinel-2 images that fall within a 30-day window of the corresponding NAIP image. Histogram matching is used to ensure consistent color distribution between the LR and HR images. A manual visual inspection is then conducted to discard any poor-quality images. The LR image is generated following the SEN2NAIPmethodology.<center>\n<img src='images/map.png' alt='drawing' width='50%'/>\n</center>\n*The spatial coverage of the dataset. The patch size is LR 130 \u00d7 130 and HR 520 \u00d7 520, respectively.",
"license": "cc0-1.0",
"extent": {
"spatial": {
"bbox": [
[
-125.0,
24.396308,
-66.93457,
49.384358
]
]
},
"temporal": {
"interval": [
[
"2015-06-23T00:00:00Z",
"2023-06-23T00:00:00Z"
]
]
}
},
"links": [
{
"href": "collection.json",
"rel": "self",
"type": "application/json",
"title": "An ML-STAC Collection JSON file"
}
],
"item_assets": {
"collection": {
"title": "An ML-STAC Item JSON file",
"description": null,
"type": "application/json",
"roles": [
"mlstac-collection"
]
},
"data": {
"title": "A collection of .mls files",
"description": null,
"type": "application/mls; profile=cloud-optimized",
"roles": [
"data"
]
},
"metadata": {
"title": "A collection of .parquet files",
"description": null,
"type": "application/parquet",
"roles": [
"metadata"
]
}
},
"title": "A larget dataset for super-resolution of Sentinel-2",
"keywords": [
"naip",
"sentinel-2",
"image-segmentation",
"deep-learning",
"remote-sensing"
],
"providers": {
"field": [
{
"name": "Image & Signal Processing",
"description": null,
"roles": [
"host"
],
"url": "https://isp.uv.es/"
},
{
"name": "ESA",
"description": null,
"roles": [
"producer"
],
"url": "https://www.esa.int/"
}
]
},
"summaries": null,
"assets": null,
"mlstac_version": "0.1.0",
"ml_task": [
"image-to-image"
],
"ml_catalog": {
"train": {
"name": "train",
"data_files": [
"https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/train/train.tortilla"
],
"data_descriptions": [
"The training set contains 20000 patches of 520x520 HR pixels and 130x130 LR pixels labels."
],
"data_checksum": [
12063148093
],
"metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/train/metadata.parquet",
"metadata_description": "The metadata of the training set.",
"metadata_checksum": 279547
},
"validation": {
"name": "validation",
"data_files": [
"https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/validation/validation.tortilla"
],
"data_descriptions": [
"The validation set contains 687 patches of 520x520 HR pixels and 130x130 LR pixels labels."
],
"data_checksum": [
633314063
],
"metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/validation/metadata.parquet",
"metadata_description": "The metadata of the validation set.",
"metadata_checksum": 20329
},
"test": {
"name": "test",
"data_files": [
"https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/test/test.tortilla"
],
"data_descriptions": [
"The test set contains 687 patches of 520x520 HR pixels and 130x130 LR pixels labels."
],
"data_checksum": [
664177892
],
"metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/test/metadata.parquet",
"metadata_description": "The metadata of the test set.",
"metadata_checksum": 21168
}
},
"ml_dataset_version": "0.1.0",
"ml_target": null,
"ml_authors": {
"authors": [
{
"name": "Freddie Kalaitzis",
"organization": "Oxford",
"identifier": null,
"position": "PhD",
"logo": null,
"phones": null,
"emails": null,
"addresses": null,
"links": [
{
"href": "https://twitter.com/alkalait",
"rel": "group",
"type": null,
"title": null
}
],
"contactInstructions": null,
"roles": null
},
{
"name": "David Montero",
"organization": "RSC4Earth",
"identifier": null,
"position": "PhD",
"logo": null,
"phones": null,
"emails": null,
"addresses": null,
"links": [
{
"href": "https://twitter.com/dmlmont",
"rel": "group",
"type": null,
"title": null
}
],
"contactInstructions": null,
"roles": null
},
{
"name": "Cesar Aybar",
"organization": "Image & Signal Processing",
"identifier": null,
"position": "PhD",
"logo": null,
"phones": null,
"emails": null,
"addresses": null,
"links": [
{
"href": "http://csaybar.github.io/",
"rel": "about",
"type": null,
"title": null
}
],
"contactInstructions": null,
"roles": null
},
{
"name": "Luis G\u00f3mez-Chova",
"organization": "Image & Signal Processing",
"identifier": null,
"position": "PhD",
"logo": null,
"phones": null,
"emails": null,
"addresses": null,
"links": [
{
"href": "https://www.uv.es/chovago/",
"rel": "about",
"type": null,
"title": null
}
],
"contactInstructions": null,
"roles": null
}
]
},
"ml_curators": {
"curators": [
{
"name": "Cesar Aybar",
"organization": "Image & Signal Processing",
"identifier": null,
"position": "PhD",
"logo": null,
"phones": null,
"emails": null,
"addresses": null,
"links": [
{
"href": "http://csaybar.github.io/",
"rel": "about",
"type": null,
"title": null
}
],
"contactInstructions": null,
"roles": null
}
]
},
"ml_reviewers": null,
"ml_dimensions": {
"dimensions": [
{
"axis": 0,
"name": "C",
"description": "Spectral bands"
},
{
"axis": 1,
"name": "H",
"description": "Height"
},
{
"axis": 2,
"name": "W",
"description": "Width"
}
]
},
"ml_spectral": {
"bands": [
{
"name": "B01",
"index": 0,
"common_name": "coastal aerosol",
"description": "Band 1 - Coastal aerosol - 60m",
"unit": "nm",
"center_wavelength": 443.5,
"full_width_half_max": 17.0
},
{
"name": "B02",
"index": 1,
"common_name": "blue",
"description": "Band 2 - Blue - 10m",
"unit": "nm",
"center_wavelength": 496.5,
"full_width_half_max": 53.0
},
{
"name": "B03",
"index": 2,
"common_name": "green",
"description": "Band 3 - Green - 10m",
"unit": "nm",
"center_wavelength": 560.0,
"full_width_half_max": 34.0
},
{
"name": "B04",
"index": 3,
"common_name": "red",
"description": "Band 4 - Red - 10m",
"unit": "nm",
"center_wavelength": 664.5,
"full_width_half_max": 29.0
},
{
"name": "B05",
"index": 4,
"common_name": "red edge 1",
"description": "Band 5 - Vegetation red edge 1 - 20m",
"unit": "nm",
"center_wavelength": 704.5,
"full_width_half_max": 13.0
},
{
"name": "B06",
"index": 5,
"common_name": "red edge 2",
"description": "Band 6 - Vegetation red edge 2 - 20m",
"unit": "nm",
"center_wavelength": 740.5,
"full_width_half_max": 13.0
},
{
"name": "B07",
"index": 6,
"common_name": "red edge 3",
"description": "Band 7 - Vegetation red edge 3 - 20m",
"unit": "nm",
"center_wavelength": 783.0,
"full_width_half_max": 18.0
},
{
"name": "B08",
"index": 7,
"common_name": "NIR",
"description": "Band 8 - Near infrared - 10m",
"unit": "nm",
"center_wavelength": 840.0,
"full_width_half_max": 114.0
},
{
"name": "B8A",
"index": 8,
"common_name": "red edge 4",
"description": "Band 8A - Vegetation red edge 4 - 20m",
"unit": "nm",
"center_wavelength": 864.5,
"full_width_half_max": 19.0
},
{
"name": "B09",
"index": 9,
"common_name": "water vapor",
"description": "Band 9 - Water vapor - 60m",
"unit": "nm",
"center_wavelength": 945.0,
"full_width_half_max": 18.0
},
{
"name": "B10",
"index": 10,
"common_name": "cirrus",
"description": "Band 10 - Cirrus - 60m",
"unit": "nm",
"center_wavelength": 1375.5,
"full_width_half_max": 31.0
},
{
"name": "B11",
"index": 11,
"common_name": "SWIR 1",
"description": "Band 11 - Shortwave infrared 1 - 20m",
"unit": "nm",
"center_wavelength": 1613.5,
"full_width_half_max": 89.0
},
{
"name": "B12",
"index": 12,
"common_name": "SWIR 2",
"description": "Band 12 - Shortwave infrared 2 - 20m",
"unit": "nm",
"center_wavelength": 2199.5,
"full_width_half_max": 173.0
}
],
"axis": null,
"sensor": "Sentinel2 - MSI"
},
"ml_split_strategy": "stratified",
"ml_raw_data_url": "https://eo4society.esa.int/projects/opensr/",
"ml_discussion_url": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/discussions",
"ml_paper": "https://www.google.com/"
}