|
{ |
|
"type": "Collection", |
|
"stac_version": "1.0.0", |
|
"stac_extensions": [ |
|
"https://stac-extensions.github.io/contacts/v0.1.1/schema.json" |
|
], |
|
"id": "SEN2NAIPv2-real", |
|
"description": "<img src='images/taco.png' alt='drawing' width='50%'/>\nThe increasing demand for high spatial resolution in remote sensing imagery has led to the necessity of super-resolution (SR) algorithms that convert low-resolution (LR) images into high-resolution (HR) ones. To address this need, we introduce SEN2NAIP, a large remote sensing dataset designed to support conventional and reference-based SR model. This dataset is a variation of the SEN2NAIP `synthetic large dataset`. We select Sentinel-2 images that fall within a 30-day window of the corresponding NAIP image. Histogram matching is used to ensure consistent color distribution between the LR and HR images. A manual visual inspection is then conducted to discard any poor-quality images. The LR image is generated following the SEN2NAIPmethodology.<center>\n<img src='images/map.png' alt='drawing' width='50%'/>\n</center>\n*The spatial coverage of the dataset. The patch size is LR 130 \u00d7 130 and HR 520 \u00d7 520, respectively.", |
|
"license": "cc0-1.0", |
|
"extent": { |
|
"spatial": { |
|
"bbox": [ |
|
[ |
|
-125.0, |
|
24.396308, |
|
-66.93457, |
|
49.384358 |
|
] |
|
] |
|
}, |
|
"temporal": { |
|
"interval": [ |
|
[ |
|
"2015-06-23T00:00:00Z", |
|
"2023-06-23T00:00:00Z" |
|
] |
|
] |
|
} |
|
}, |
|
"links": [ |
|
{ |
|
"href": "collection.json", |
|
"rel": "self", |
|
"type": "application/json", |
|
"title": "An ML-STAC Collection JSON file" |
|
} |
|
], |
|
"item_assets": { |
|
"collection": { |
|
"title": "An ML-STAC Item JSON file", |
|
"description": null, |
|
"type": "application/json", |
|
"roles": [ |
|
"mlstac-collection" |
|
] |
|
}, |
|
"data": { |
|
"title": "A collection of .mls files", |
|
"description": null, |
|
"type": "application/mls; profile=cloud-optimized", |
|
"roles": [ |
|
"data" |
|
] |
|
}, |
|
"metadata": { |
|
"title": "A collection of .parquet files", |
|
"description": null, |
|
"type": "application/parquet", |
|
"roles": [ |
|
"metadata" |
|
] |
|
} |
|
}, |
|
"title": "A larget dataset for super-resolution of Sentinel-2", |
|
"keywords": [ |
|
"naip", |
|
"sentinel-2", |
|
"image-segmentation", |
|
"deep-learning", |
|
"remote-sensing" |
|
], |
|
"providers": { |
|
"field": [ |
|
{ |
|
"name": "Image & Signal Processing", |
|
"description": null, |
|
"roles": [ |
|
"host" |
|
], |
|
"url": "https://isp.uv.es/" |
|
}, |
|
{ |
|
"name": "ESA", |
|
"description": null, |
|
"roles": [ |
|
"producer" |
|
], |
|
"url": "https://www.esa.int/" |
|
} |
|
] |
|
}, |
|
"summaries": null, |
|
"assets": null, |
|
"mlstac_version": "0.1.0", |
|
"ml_task": [ |
|
"image-to-image" |
|
], |
|
"ml_catalog": { |
|
"train": { |
|
"name": "train", |
|
"data_files": [ |
|
"https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/train/train.tortilla" |
|
], |
|
"data_descriptions": [ |
|
"The training set contains 20000 patches of 520x520 HR pixels and 130x130 LR pixels labels." |
|
], |
|
"data_checksum": [ |
|
12063148093 |
|
], |
|
"metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/train/metadata.parquet", |
|
"metadata_description": "The metadata of the training set.", |
|
"metadata_checksum": 279547 |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"data_files": [ |
|
"https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/validation/validation.tortilla" |
|
], |
|
"data_descriptions": [ |
|
"The validation set contains 687 patches of 520x520 HR pixels and 130x130 LR pixels labels." |
|
], |
|
"data_checksum": [ |
|
633314063 |
|
], |
|
"metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/validation/metadata.parquet", |
|
"metadata_description": "The metadata of the validation set.", |
|
"metadata_checksum": 20329 |
|
}, |
|
"test": { |
|
"name": "test", |
|
"data_files": [ |
|
"https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/test/test.tortilla" |
|
], |
|
"data_descriptions": [ |
|
"The test set contains 687 patches of 520x520 HR pixels and 130x130 LR pixels labels." |
|
], |
|
"data_checksum": [ |
|
664177892 |
|
], |
|
"metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/test/metadata.parquet", |
|
"metadata_description": "The metadata of the test set.", |
|
"metadata_checksum": 21168 |
|
} |
|
}, |
|
"ml_dataset_version": "0.1.0", |
|
"ml_target": null, |
|
"ml_authors": { |
|
"authors": [ |
|
{ |
|
"name": "Freddie Kalaitzis", |
|
"organization": "Oxford", |
|
"identifier": null, |
|
"position": "PhD", |
|
"logo": null, |
|
"phones": null, |
|
"emails": null, |
|
"addresses": null, |
|
"links": [ |
|
{ |
|
"href": "https://twitter.com/alkalait", |
|
"rel": "group", |
|
"type": null, |
|
"title": null |
|
} |
|
], |
|
"contactInstructions": null, |
|
"roles": null |
|
}, |
|
{ |
|
"name": "David Montero", |
|
"organization": "RSC4Earth", |
|
"identifier": null, |
|
"position": "PhD", |
|
"logo": null, |
|
"phones": null, |
|
"emails": null, |
|
"addresses": null, |
|
"links": [ |
|
{ |
|
"href": "https://twitter.com/dmlmont", |
|
"rel": "group", |
|
"type": null, |
|
"title": null |
|
} |
|
], |
|
"contactInstructions": null, |
|
"roles": null |
|
}, |
|
{ |
|
"name": "Cesar Aybar", |
|
"organization": "Image & Signal Processing", |
|
"identifier": null, |
|
"position": "PhD", |
|
"logo": null, |
|
"phones": null, |
|
"emails": null, |
|
"addresses": null, |
|
"links": [ |
|
{ |
|
"href": "http://csaybar.github.io/", |
|
"rel": "about", |
|
"type": null, |
|
"title": null |
|
} |
|
], |
|
"contactInstructions": null, |
|
"roles": null |
|
}, |
|
{ |
|
"name": "Luis G\u00f3mez-Chova", |
|
"organization": "Image & Signal Processing", |
|
"identifier": null, |
|
"position": "PhD", |
|
"logo": null, |
|
"phones": null, |
|
"emails": null, |
|
"addresses": null, |
|
"links": [ |
|
{ |
|
"href": "https://www.uv.es/chovago/", |
|
"rel": "about", |
|
"type": null, |
|
"title": null |
|
} |
|
], |
|
"contactInstructions": null, |
|
"roles": null |
|
} |
|
] |
|
}, |
|
"ml_curators": { |
|
"curators": [ |
|
{ |
|
"name": "Cesar Aybar", |
|
"organization": "Image & Signal Processing", |
|
"identifier": null, |
|
"position": "PhD", |
|
"logo": null, |
|
"phones": null, |
|
"emails": null, |
|
"addresses": null, |
|
"links": [ |
|
{ |
|
"href": "http://csaybar.github.io/", |
|
"rel": "about", |
|
"type": null, |
|
"title": null |
|
} |
|
], |
|
"contactInstructions": null, |
|
"roles": null |
|
} |
|
] |
|
}, |
|
"ml_reviewers": null, |
|
"ml_dimensions": { |
|
"dimensions": [ |
|
{ |
|
"axis": 0, |
|
"name": "C", |
|
"description": "Spectral bands" |
|
}, |
|
{ |
|
"axis": 1, |
|
"name": "H", |
|
"description": "Height" |
|
}, |
|
{ |
|
"axis": 2, |
|
"name": "W", |
|
"description": "Width" |
|
} |
|
] |
|
}, |
|
"ml_spectral": { |
|
"bands": [ |
|
{ |
|
"name": "B01", |
|
"index": 0, |
|
"common_name": "coastal aerosol", |
|
"description": "Band 1 - Coastal aerosol - 60m", |
|
"unit": "nm", |
|
"center_wavelength": 443.5, |
|
"full_width_half_max": 17.0 |
|
}, |
|
{ |
|
"name": "B02", |
|
"index": 1, |
|
"common_name": "blue", |
|
"description": "Band 2 - Blue - 10m", |
|
"unit": "nm", |
|
"center_wavelength": 496.5, |
|
"full_width_half_max": 53.0 |
|
}, |
|
{ |
|
"name": "B03", |
|
"index": 2, |
|
"common_name": "green", |
|
"description": "Band 3 - Green - 10m", |
|
"unit": "nm", |
|
"center_wavelength": 560.0, |
|
"full_width_half_max": 34.0 |
|
}, |
|
{ |
|
"name": "B04", |
|
"index": 3, |
|
"common_name": "red", |
|
"description": "Band 4 - Red - 10m", |
|
"unit": "nm", |
|
"center_wavelength": 664.5, |
|
"full_width_half_max": 29.0 |
|
}, |
|
{ |
|
"name": "B05", |
|
"index": 4, |
|
"common_name": "red edge 1", |
|
"description": "Band 5 - Vegetation red edge 1 - 20m", |
|
"unit": "nm", |
|
"center_wavelength": 704.5, |
|
"full_width_half_max": 13.0 |
|
}, |
|
{ |
|
"name": "B06", |
|
"index": 5, |
|
"common_name": "red edge 2", |
|
"description": "Band 6 - Vegetation red edge 2 - 20m", |
|
"unit": "nm", |
|
"center_wavelength": 740.5, |
|
"full_width_half_max": 13.0 |
|
}, |
|
{ |
|
"name": "B07", |
|
"index": 6, |
|
"common_name": "red edge 3", |
|
"description": "Band 7 - Vegetation red edge 3 - 20m", |
|
"unit": "nm", |
|
"center_wavelength": 783.0, |
|
"full_width_half_max": 18.0 |
|
}, |
|
{ |
|
"name": "B08", |
|
"index": 7, |
|
"common_name": "NIR", |
|
"description": "Band 8 - Near infrared - 10m", |
|
"unit": "nm", |
|
"center_wavelength": 840.0, |
|
"full_width_half_max": 114.0 |
|
}, |
|
{ |
|
"name": "B8A", |
|
"index": 8, |
|
"common_name": "red edge 4", |
|
"description": "Band 8A - Vegetation red edge 4 - 20m", |
|
"unit": "nm", |
|
"center_wavelength": 864.5, |
|
"full_width_half_max": 19.0 |
|
}, |
|
{ |
|
"name": "B09", |
|
"index": 9, |
|
"common_name": "water vapor", |
|
"description": "Band 9 - Water vapor - 60m", |
|
"unit": "nm", |
|
"center_wavelength": 945.0, |
|
"full_width_half_max": 18.0 |
|
}, |
|
{ |
|
"name": "B10", |
|
"index": 10, |
|
"common_name": "cirrus", |
|
"description": "Band 10 - Cirrus - 60m", |
|
"unit": "nm", |
|
"center_wavelength": 1375.5, |
|
"full_width_half_max": 31.0 |
|
}, |
|
{ |
|
"name": "B11", |
|
"index": 11, |
|
"common_name": "SWIR 1", |
|
"description": "Band 11 - Shortwave infrared 1 - 20m", |
|
"unit": "nm", |
|
"center_wavelength": 1613.5, |
|
"full_width_half_max": 89.0 |
|
}, |
|
{ |
|
"name": "B12", |
|
"index": 12, |
|
"common_name": "SWIR 2", |
|
"description": "Band 12 - Shortwave infrared 2 - 20m", |
|
"unit": "nm", |
|
"center_wavelength": 2199.5, |
|
"full_width_half_max": 173.0 |
|
} |
|
], |
|
"axis": null, |
|
"sensor": "Sentinel2 - MSI" |
|
}, |
|
"ml_split_strategy": "stratified", |
|
"ml_raw_data_url": "https://eo4society.esa.int/projects/opensr/", |
|
"ml_discussion_url": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/discussions", |
|
"ml_paper": "https://www.google.com/" |
|
} |