{ "type": "Collection", "stac_version": "1.0.0", "stac_extensions": [ "https://stac-extensions.github.io/contacts/v0.1.1/schema.json" ], "id": "SEN2NAIPv2-real", "description": "drawing\nThe increasing demand for high spatial resolution in remote sensing imagery has led to the necessity of super-resolution (SR) algorithms that convert low-resolution (LR) images into high-resolution (HR) ones. To address this need, we introduce SEN2NAIP, a large remote sensing dataset designed to support conventional and reference-based SR model. This dataset is a variation of the SEN2NAIP `synthetic large dataset`. We select Sentinel-2 images that fall within a 30-day window of the corresponding NAIP image. Histogram matching is used to ensure consistent color distribution between the LR and HR images. A manual visual inspection is then conducted to discard any poor-quality images. The LR image is generated following the SEN2NAIPmethodology.
\ndrawing\n
\n*The spatial coverage of the dataset. The patch size is LR 130 \u00d7 130 and HR 520 \u00d7 520, respectively.", "license": "cc0-1.0", "extent": { "spatial": { "bbox": [ [ -125.0, 24.396308, -66.93457, 49.384358 ] ] }, "temporal": { "interval": [ [ "2015-06-23T00:00:00Z", "2023-06-23T00:00:00Z" ] ] } }, "links": [ { "href": "collection.json", "rel": "self", "type": "application/json", "title": "An ML-STAC Collection JSON file" } ], "item_assets": { "collection": { "title": "An ML-STAC Item JSON file", "description": null, "type": "application/json", "roles": [ "mlstac-collection" ] }, "data": { "title": "A collection of .mls files", "description": null, "type": "application/mls; profile=cloud-optimized", "roles": [ "data" ] }, "metadata": { "title": "A collection of .parquet files", "description": null, "type": "application/parquet", "roles": [ "metadata" ] } }, "title": "A larget dataset for super-resolution of Sentinel-2", "keywords": [ "naip", "sentinel-2", "image-segmentation", "deep-learning", "remote-sensing" ], "providers": { "field": [ { "name": "Image & Signal Processing", "description": null, "roles": [ "host" ], "url": "https://isp.uv.es/" }, { "name": "ESA", "description": null, "roles": [ "producer" ], "url": "https://www.esa.int/" } ] }, "summaries": null, "assets": null, "mlstac_version": "0.1.0", "ml_task": [ "image-to-image" ], "ml_catalog": { "train": { "name": "train", "data_files": [ "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/train/train.tortilla" ], "data_descriptions": [ "The training set contains 20000 patches of 520x520 HR pixels and 130x130 LR pixels labels." ], "data_checksum": [ 12063148093 ], "metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/train/metadata.parquet", "metadata_description": "The metadata of the training set.", "metadata_checksum": 279547 }, "validation": { "name": "validation", "data_files": [ "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/validation/validation.tortilla" ], "data_descriptions": [ "The validation set contains 687 patches of 520x520 HR pixels and 130x130 LR pixels labels." ], "data_checksum": [ 633314063 ], "metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/validation/metadata.parquet", "metadata_description": "The metadata of the validation set.", "metadata_checksum": 20329 }, "test": { "name": "test", "data_files": [ "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/test/test.tortilla" ], "data_descriptions": [ "The test set contains 687 patches of 520x520 HR pixels and 130x130 LR pixels labels." ], "data_checksum": [ 664177892 ], "metadata_file": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/resolve/main/test/metadata.parquet", "metadata_description": "The metadata of the test set.", "metadata_checksum": 21168 } }, "ml_dataset_version": "0.1.0", "ml_target": null, "ml_authors": { "authors": [ { "name": "Freddie Kalaitzis", "organization": "Oxford", "identifier": null, "position": "PhD", "logo": null, "phones": null, "emails": null, "addresses": null, "links": [ { "href": "https://twitter.com/alkalait", "rel": "group", "type": null, "title": null } ], "contactInstructions": null, "roles": null }, { "name": "David Montero", "organization": "RSC4Earth", "identifier": null, "position": "PhD", "logo": null, "phones": null, "emails": null, "addresses": null, "links": [ { "href": "https://twitter.com/dmlmont", "rel": "group", "type": null, "title": null } ], "contactInstructions": null, "roles": null }, { "name": "Cesar Aybar", "organization": "Image & Signal Processing", "identifier": null, "position": "PhD", "logo": null, "phones": null, "emails": null, "addresses": null, "links": [ { "href": "http://csaybar.github.io/", "rel": "about", "type": null, "title": null } ], "contactInstructions": null, "roles": null }, { "name": "Luis G\u00f3mez-Chova", "organization": "Image & Signal Processing", "identifier": null, "position": "PhD", "logo": null, "phones": null, "emails": null, "addresses": null, "links": [ { "href": "https://www.uv.es/chovago/", "rel": "about", "type": null, "title": null } ], "contactInstructions": null, "roles": null } ] }, "ml_curators": { "curators": [ { "name": "Cesar Aybar", "organization": "Image & Signal Processing", "identifier": null, "position": "PhD", "logo": null, "phones": null, "emails": null, "addresses": null, "links": [ { "href": "http://csaybar.github.io/", "rel": "about", "type": null, "title": null } ], "contactInstructions": null, "roles": null } ] }, "ml_reviewers": null, "ml_dimensions": { "dimensions": [ { "axis": 0, "name": "C", "description": "Spectral bands" }, { "axis": 1, "name": "H", "description": "Height" }, { "axis": 2, "name": "W", "description": "Width" } ] }, "ml_spectral": { "bands": [ { "name": "B01", "index": 0, "common_name": "coastal aerosol", "description": "Band 1 - Coastal aerosol - 60m", "unit": "nm", "center_wavelength": 443.5, "full_width_half_max": 17.0 }, { "name": "B02", "index": 1, "common_name": "blue", "description": "Band 2 - Blue - 10m", "unit": "nm", "center_wavelength": 496.5, "full_width_half_max": 53.0 }, { "name": "B03", "index": 2, "common_name": "green", "description": "Band 3 - Green - 10m", "unit": "nm", "center_wavelength": 560.0, "full_width_half_max": 34.0 }, { "name": "B04", "index": 3, "common_name": "red", "description": "Band 4 - Red - 10m", "unit": "nm", "center_wavelength": 664.5, "full_width_half_max": 29.0 }, { "name": "B05", "index": 4, "common_name": "red edge 1", "description": "Band 5 - Vegetation red edge 1 - 20m", "unit": "nm", "center_wavelength": 704.5, "full_width_half_max": 13.0 }, { "name": "B06", "index": 5, "common_name": "red edge 2", "description": "Band 6 - Vegetation red edge 2 - 20m", "unit": "nm", "center_wavelength": 740.5, "full_width_half_max": 13.0 }, { "name": "B07", "index": 6, "common_name": "red edge 3", "description": "Band 7 - Vegetation red edge 3 - 20m", "unit": "nm", "center_wavelength": 783.0, "full_width_half_max": 18.0 }, { "name": "B08", "index": 7, "common_name": "NIR", "description": "Band 8 - Near infrared - 10m", "unit": "nm", "center_wavelength": 840.0, "full_width_half_max": 114.0 }, { "name": "B8A", "index": 8, "common_name": "red edge 4", "description": "Band 8A - Vegetation red edge 4 - 20m", "unit": "nm", "center_wavelength": 864.5, "full_width_half_max": 19.0 }, { "name": "B09", "index": 9, "common_name": "water vapor", "description": "Band 9 - Water vapor - 60m", "unit": "nm", "center_wavelength": 945.0, "full_width_half_max": 18.0 }, { "name": "B10", "index": 10, "common_name": "cirrus", "description": "Band 10 - Cirrus - 60m", "unit": "nm", "center_wavelength": 1375.5, "full_width_half_max": 31.0 }, { "name": "B11", "index": 11, "common_name": "SWIR 1", "description": "Band 11 - Shortwave infrared 1 - 20m", "unit": "nm", "center_wavelength": 1613.5, "full_width_half_max": 89.0 }, { "name": "B12", "index": 12, "common_name": "SWIR 2", "description": "Band 12 - Shortwave infrared 2 - 20m", "unit": "nm", "center_wavelength": 2199.5, "full_width_half_max": 173.0 } ], "axis": null, "sensor": "Sentinel2 - MSI" }, "ml_split_strategy": "stratified", "ml_raw_data_url": "https://eo4society.esa.int/projects/opensr/", "ml_discussion_url": "https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2-real/discussions", "ml_paper": "https://www.google.com/" }