{ "timestamp": "2024-08-03T01:43:01.177Z", "image": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAYAAAD0eNT6AAAAAXNSR0IArs4c6QAAIABJREFUeF7t3X20r2OdP/D3ORvnwXlwOBxGeRpqFa1Q8jAtimEKRRQphH7DlEwmsooxaQy1xKSRGuYXFaWUopBhqKxGDxq0QqsYHDKeDodzjvOAfc5v3btZM/Ur2dfe3/19uO7XvZa/uu7ruj6vz9U6773393vfk1atWrUqLgIECBAgQKBVApMEgFb1W7EECBAgQGBEQABwEAgQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNl3JBAgQIEBAAHAGCBAgQIBACwUEgBY2XckECBAgQEAAcAYIECBAgEALBQSAFjZdyQQIECBAQABwBggQIECAQAsFBIAWNr3jJa9a9btTTprU8SVMSIAAAQKdFRAAOutZ3WyrFi/Oc7/6VZ67554Mz5+f4V//OsMPP5yVjzySlQsXZtWTT2bVsmVZtWLFSO2TpkzJpGnTMmmttTJ5zpxMnjcvQ+uvn6EXvShDG2+c1TbbLKu95CWZNHNmdVYKIkCAwCAJCACD1K0u7LX5R/7ZW27Jsz/7WZ69/fY8d8cdGX7ooY6uPLTBBlltyy2z+lZbZfVXvjKrb7vtSDhwESBAgED3BASA7ln37UrP3nZbnrnppt/896MfZeWCBV3d6+S5c7PGDjtkjZ12Gvlv9a237ur6FiNAgEAbBQSANnY9yfD992fF9ddnxQ035Jkbb8zKp57qC4nJs2dnjZ13zpRdd82U3XbL0EYb9cW+bIIAAQK1CQgAtXX0Bep55uabs+Kqq7L8O9/Jc7/8ZV9Xv9pLX5qpb3xjpuy1V9bYbru+3qvNESBAYNAEBIBB69gY99v8lL/siiuy/FvfysrHHhvjLL25bfK662bqm9+cafvsM/LbARcBAgQIjF9AABi/YV/P8OxPf5pll16aZV/72sin9gf5ar5VMO1tb8u0Aw7I6q9+9SCXYu8ECBDouYAA0PMWTMwGhh94IMsuuSRLL7kkw/feOzGL9GjWoU03zfSDDsq0d7xj5OuFLgIECBAoFxAAys36/o5ll12WZV/8YlZ8//t9v9fxbHDKLrtk2qGHZtr++49nGvcSIECglQICQEVtbx7Ws/TCC7P0859P8wCfNlzNA4WmH3ZYph9++MhDhlwECBAgMDoBAWB0Tn0/asW11+bp884b+WpfG6/mK4NrHnVUpuyxRxvLVzMBAgSKBQSAYrL+u6H5h//pz342w/fd13+b6+KOhjbZJGu+5z0jQcBFgAABAn9cQAAY4BOy8vHH8/Q552TJOeckw8MDXEkHtz40lBnHHJM1jzkmk9dZp4MTm4oAAQJ1CQgAA9rP5u/9T599dpZ+8YsDWsHEbnv6oYdmzWOP9bmACWAezsqRWYcyeQJmNyUBAt0SEAC6Jd3BdZqX9Cw588wsv/zyDs5a31RT9903M44/fuSlQ64XFngyS3N3Hs5deST35bE8kMfzX1mYR7MoC7I4i7Msi7M8z+Y3v21aPUOZmamZmWmZm5lZL7PyJ5mTF2edbJJ1s0XmZfOsn7Uy/YUXN4IAga4LCABdJx/fgs1b+paccUaWX3XV+CZqyd1T99orM044YeStg67fFbgnj+aW3Jdbc19+lvm5Iw/mwTzRUaYNs3a2zIZ5ZTbONtkk22aTbJb1OrqGyQgQGJuAADA2t57cNfKT/+mnZ/nVV/dk/UFddOqee2bGiSf6TUCSWzM/N+YX+UF+mR/mrpGf7rt5Nb8l2DFb5LV5aXbOy7JNvAa6m/7WIvDbAgLAgJyH5m/+i089Ncu/+c0B2XF/bXPqW96SmSef3MrPBDS/zr8ut+ffcnuuz+1ZlGV90ZxZmZbdslX+PFtl92w18mcDFwEC3RMQALpnPeaVmk/7Lz7llCy96KIxz+HGZPohh2TmKae05tsBzU/4V+bWXJVbc2ce7Osj8PJsmL2yTfbONiO/IXARIDDxAgLAxBuPe4XmH/8lZ5897nlMkMw49tiREFDz9d3cmW/k5lyen+aRPDVQpc7L7OybV2e/bJfX5+UDtXebJTBoAgJAn3fs6fPPz6IPf9j3/DvVp6GhzPrYx7LmkUd2asa+mefHuTuX5Ie5ND8a+dT+IF/NtwoOyA45KDtm+2w+yKXYO4G+FRAA+rY1yYprrslTH/pQ65/w1+kWNU8MnP3xj2fKG97Q6al7Mt/8LMjF+UG+lH/P3XmkJ3uYqEU3z7y8M3+Wg/PabJy5E7WMeQm0UkAA6NO2N4/1feq441r7bP+Jbkvz7oDZZ52VJgwM8tX8tH9Bvp8bcscgl/GCe981W+aI7DLyWwEXAQKdERAAOuPY8VkWnXzyyGN+XRMn0DwueNapp07cAhM4c/Md/vNzw8h/S7J8Alfqn6lnZGqOzK4j/3mWQP/0xU4GV0AA6MPeLbvssjx1zDFZtXRpH+6uni1Nmj49s885J9P233+giro6t+XcXJfr8vOB2nenNrt7XpGjs3v2zNadmtI8BFopIAD0WduHf/3rPPW+92XF977XZzurcztTXve6kRAw9OIXD0SBzT/8n86/5j/z6EDsd6I2+adZL+/LX4wEARcBAmMTEADG5jZhdzWP+V18+ukTNr+Jf19g5oknjjwuuJ+vJ7IkZ+XqnJWrsjKr+nmrXdvb5EzKcdkrx2XPrJ0ZXVvXQgRqERAA+qiTz/zkJ3nyqKMyfO+9fbSr+rcytOmmWeu887LGa17Tl8XelYdzZq7Khfl+X+6v15s6PLvk+OyVLbJ+r7difQIDJSAA9FG7Fp1wQprv/bu6L9A8F2DWGWd0f+EXWPH2PJDTc0W+np/03d76aUNvzWtyYvbJVhmMP+X0k529tFdAAOiT3j9z441ZeMQRWblgQZ/sqF3bmDx3buZccEHW2Hnnvim8eVPfabk8384tfbOnft7Im7JtTsq+I28cdBEg8MICAsALG3VlRPOd/6Wf+1xX1rLIHxaY/u53jzwboB+u5if/j+Qy//gXNqMJAR/N/n4TUOhmeDsFBIA+6PszP/5xFh58cFY+9lgf7Ka9W5i87rqZc/HFWWP77XuK0PzN/yP5ul/7j7ELzZ8DPpq3+kzAGP3c1h4BAaAPeu1lP33QhP/eQq9fFtR82v/D+aoP/I3zSDQfDPxYDvTtgHE6ur1uAQGgx/0dvv/+PHHggXnuF7/o8U4s3wis9rKXZe2vfjVDG23UE5CTcmk+kSt7snZti34we+e0HFBbWeoh0DEBAaBjlGObaOmFF+apv/mbsd3srgkRmP3JT2b64YdPyNx/bNLmIT/H5WLf8++QfPOcgLNysIcFdcjTNPUJCAA97unCQw7J8m9/u8e7sPxvC0x905sy56KLuorSPN63+ce/7U/46zR688TAJgR4bHCnZc1Xg4AA0MMuPnvbbXl8772zasmSHu7C0v+/wKQZM7LOlVdm9a2786z55sU+x+QLrX22/0SfwObdAefkXV4gNNHQ5h84AQGghy17+txzs+ikk3q4A0s/n8Cs007Lmkcf3RWgD+Ur+cdc3ZW12rrIB7JnPp63t7V8dRP4gwICQA8PRvPVv+VX+sBXD1vwvEtP3Xvvka8ETvR1aX6Uv8oFrXml70R7Pt/8zauE/zlH5IDs0KstWJdA3wkIAD1qyfD8+Vmwxx5Z+cgjPdqBZf+YwOR58zL32msztPHGEwY1PwtyVD6XG3LHhK1h4v8V2DVb5ry8OxtnLhYCBJIIAD06BssvvzwLDzusR6tbdjQCcz7/+Uzdd9/RDB3TmOYxvx/NN8Z0r5vGJvCR7DfyuGAXAQICQM/OgIf/9Ix+1AtP5EOBfpy7c3jOy93xG6BRN6QDAzfPvFyYo7J9Nu/AbKYgMNgCfgPQo/49sd9+WXHDDT1a3bKjEZiy665Z+xsT8xP6sbkon8l1o9mGMR0WeG92z9k5pMOzmo7A4AkIAD3o2cqFC7Ngp50y/NBDPVjdkqMVGNpgg8y96aZMnjNntLeMatx3c2femXOzIItHNd6gzgrMzcx8KUfn9Xl5Zyc2G4EBExAAetCwZ//jP7Jgt916sLIlSwXmXn99Vn/Vq0pv+6Pjm+/8n5frOzqnycoEjspuI88GcBFos4AA0IPuL7v00jx55JE9WNmSpQJrnX9+ph3QuefJ/zB35YD8Ux7JU6VbMb6DAvMyO5fmr7NjtujgrKYiMFgCAkAP+rXkzDOz+B/+oQcrW7JUYObf/m1mHH986W3PO97LfjpGOe6JvCxo3IQmGHABAaAHDWxe/tO8BMjV/wLNS4GalwN14rovj2Xf/GPuzIOdmM4c4xR4eTbM5flANsm645zJ7QQGU0AA6EHfnnj727Pimmt6sLIlSwWmvOENWfsrXym97Q+O/5d8N0dH8OsIZocmOTeH5y/z+g7NZhoCgyUgAPSgX80HAJsPArr6X6D5AGDzQcBOXAfmnHwzN3diKnN0SOAt2S5fzTEdms00BAZLQADoQb8e3XrrDN93Xw9WtmSpwNAmm2S9224rve33xt+a+dk9p2dRlo17LhN0TmBWpuW6nJhtMnGPfO7cbs1EoLMCAkBnPUc12yObb56VCxaMaqxBvRWYPHdu5t1997g38alckw/my+OexwSdF/hE3pH35w2dn9iMBPpcQADoQYMenjcvq1as6MHKliwVmDRlStbvwAub3pZP5Yr4s0+pfzfG75NX5Wt5fzeWsgaBvhIQALrdjlWr8tDcucnwcLdXtt5YBIaGssHjj4/lzv+55548mp3z93k0i8Y1j5snRmC9zMqN+btslvUmZgGzEuhTAQGg240RALotPr71OhAAvp6f5B359Pj24e4JFfhy3pe35jUTuobJCfSbgADQg474E0AP0Me4ZCf+BODhP2PE7+JtHgrURWxL9Y2AANCDVvgQYA/Qx7hkJz4EuHc+kWvz8zHuwG3dENgjr8iV+WA3lrIGgb4REAB60ApfA+wB+hiXHO/XAJ/M0myTE/NgnhjjDtzWDYENs3ZuzelZK9O7sZw1CPSFgADQgzZ4EFAP0Me45HgfBPTT3JOdcsoYV3dbNwVuyil5dTbr5pLWItBTAQGgB/weBdwD9DEuOd5HAV+SH+Zd+ewYV3dbNwW+kPfkoOzYzSWtRaCnAgJAD/i9DKgH6GNccrwvA/pYvpWP5OtjXN1t3RT4aN6aD+fN3VzSWgR6KiAA9IDf64B7gD7GJcf7OuD35sL833x3jKu7rZsC/yevz2dyeDeXtBaBngoIAD3gX3bppXnyyCN7sLIlSwXWOv/8TDvggNLb/md88/rfqzP+dwmMeQNuHLXAntl65PXALgJtERAAetDp5k2AzQcBXf0v0LwJsPkg4Fiv5gOAzQcBXf0v0HwAsPkgoItAWwQEgB50euXChVmw004ZfuihHqxuydEKDG2wQebedFMmz5kz2lt+b9xLclzuy2Njvt+N3RPYJOvmVzmrewtaiUCPBQSAHjXgif32y4obbujR6pYdjcCUXXfN2t/4xmiGPu+YDfLePJ4l45rDzd0RWCcz8lA+053FrEKgDwQEgB41YfEpp2TJ2Wf3aHXLjkZgxrHHZuYp4/uV8IwckWfy3GiWM6bHAmtktSzJBT3eheUJdE9AAOie9e+stPzyy7PwsMN6tLplRyMw5/Ofz9R99x3N0D84ZjgrMz2HZ1VWjXkON3ZPYFImZUW+0L0FrUSgxwICQI8aMDx/fhbssUdWduBd8z0qoeplJ8+bl7nXXpuhjTcec50CwJjpenKjANATdov2UEAA6CH+woMPzvIrr+zhDiz9fAJT9947cy6+eNxA/gQwbsKuTeBPAF2jtlCfCAgAPWzE0+eem0UnndTDHVj6+QRmnXZa1jz66HED+RDguAm7NoEPAXaN2kJ9IiAA9LARz952Wx7fe++sWuJT4j1sw+8tPWnGjKxz5ZVZfeutx70tXwMcN2HXJvA1wK5RW6hPBASAHjdi4SGHZPm3v93jXVj+twWmvulNmXPRRR1B8SCgjjB2ZRIPAuoKs0X6SEAA6HEzll54YZqXA7n6R2D2Jz+Z5iVAnbg8CrgTit2Zw6OAu+Nslf4REAB63Ivh++/PEwcemOd+8Yse78TyjcBqL3tZ1v7qVzO00UYdAfEyoI4wdmUSLwPqCrNF+khAAOiDZngoUB804b+30ImH//x2NV4H3D+9faGdeB3wCwn532sTEAD6oKPP/PjHab4SuPIxz4zvZTsmr7vuyFf/1th++45t45L8MO/KZzs2n4kmTuALeU8Oyo4Tt4CZCfSZgADQJw156rjjsvRzn+uT3bRzG9Pf/e7MPquzL4Np3gTYfBDQ1f8CzZsAmw8Cugi0RUAA6JNOP3PjjVl4xBFZuWBBn+yoXduYPHdu5lxwQdbYeeeOFv5klmabnJgH80RH5zVZZwU2zNq5NadnrUzv7MRmI9DHAgJAHzVn0Qkn5Onzz++jHbVnK2seeWRmnXHGhBS8dz6Ra/PzCZnbpJ0R2COvyJX5YGcmMwuBAREQAPqoUc/85Cd58qijMnzvvX20q/q3MrTpplnrvPOyxmteMyHFnpRL84l45POE4HZo0g9m75yWAzo0m2kIDIaAANBnfVpyxhlZfPrpfbarurcz88QTM+OEEyasyK/nJ3lHPj1h85t4/AJfzvvy1kxMABz/7sxAYGIEBICJcR3zrMMPPJCnjjkmK773vTHP4cbRC0x53esy+9OfztCLXjT6mwpH3pNHs3P+Po9mUeGdhndDYL3Myo35u2yW9bqxnDUI9I2AANA3rfjfjSy77LKRELBq6dI+3F09W5o0fXpmn3NOpu2//4QX9bZ8KlfkPyZ8HQuUC+yTV+VreX/5je4gMOACAkCfNnDRySfn6XPO6dPd1bGtNY85JrNOPbUrxXwq1+SD+XJX1rJImcAn8o68P28ou8loAhUICAB92sTh++5L82yAFddf36c7HOxtTdltt5Hv/A9tsklXCrk187N7Ts+iLOvKehYZncCsTMt1OTHbZOPR3WAUgYoEBIA+buaKa67JUx/6UJow4OqcQPOP/uyPfzxT3tDdn/oOzDn5Zm7uXCFmGrfAW7Jdvppjxj2PCQgMooAA0Odda54LsOjDH06Gh/t8pwOyvaGhzPrYx9J877/b17/kuzk6F3Z7Wev9EYFzc3j+Mq9nRKCVAgLAALTdy4I616ROv+ynZGf35bE0rwe+Mw+W3GbsBAm8PBvm8nwgm2TdCVrBtAT6W0AA6O/+jOxu5eOPpwkBSy+6aAB2279bnH7IIZl5yimZvM46PdukhwL1jP73Fvbwn/7phZ30RkAA6I178arP3XNPFp96apZ/85vF97ohmfqWt2TmySdntc16+7KXH+auHJB/yiN5Slt6KDAvs3Np/jo7Zose7sLSBHorIAD01r9o9Wdvvz1LTj89y6++uui+tg+euueemXHiiVl9q636guKYfCHnxbc7etmMo7Jbzsm7erkFaxPouYAA0PMWlG3g2Z/9LM3jgpdfdVXZjS0dPXWvvUYe87v6K1/ZNwLfzZ15Z87Ngizumz21aSNzMzNfytF5fV7eprLVSuD3BASAATwUI78JOPPMLL/88gHcffe2PHXffTPj+OP75if/36782FyUz+S67mFY6X8E3pvdc3YOIUKg9QICwIAegeYzAU+ffXaWfvGLA1rBxG57+qGHZs1jj+353/yfr8of5+4cnvNydx6ZWAiz/47A5pmXC3NUts/mZAi0XkAAGOAj0Hw7oHlc8JLmkcGeE/CbTg4NZcYxx6R5zG8vP+0/mmN1Wi7PR/ON0Qw1pkMCH8l+OSn7dmg20xAYbAEBYLD7N7L7p887L09/9rOtf2Jg84S/Nd/znqx51FED0dX5WZCj8rnckDsGYr+Dvslds2XOy7uzceYOein2T6AjAgJARxh7P8mKa68dCQJtfXdA82z/5h/+KXvs0ftmFOzg0vwof5ULsiTLC+4ytFRgRqbmn3NEDsgOpbcaT6BaAQGgotY2nwtYeuGFWfr5z2fV4nZ8wnzSzJmZfthhmX744X379/4XOmIfylfyj/HVzhdyGs///oHsmY/n7eOZwr0EqhMQAKprabLsssuy7ItfzIrvf7/C6v63pCm77JJphx6aafvvP9B13pNH0zwb4Lr8fKDr6NfN755XjHznf7Os169btC8CPREQAHrCPvGLDv/611n25S9n6SWXZPjeeyd+wS6uMLTpppl+0EGZdtBBGXrxi7u48sQtdXVuy3G5OP+ZRydukRbO/KdZL2fl4OyZrVtYvZIJ/HEBAaDyE/LsT3+aZZdemmVf+1pWLlw40NVOnjMn0972tkw74ICs/upXD3Qtf2jz5+a6kRCwMquqq60XBU3OpJF//I/O7r1Y3poE+l5AAOj7FnVmg8/ceGOWXXFFln/rW1n52GOdmbRLs0xed91MffObM22ffbLGzjt3adXeLONlQZ1z97KfzlmaqU4BAaDOvj5vVc/cfHNWXHVVln/nO3nul7/s6+pXe+lLM/WNb8yUvfbKGttt19d77dTmnsiSfDhfzYXS4IGHAAAPSklEQVSp+/MbnfJ6vnkOzy75WA7M2pkx0UuZn8DACggAA9u68W18+P77R74yuOKGG9L8dmDlU/3xdrrJs2eP/JQ/Zddd03y1b2ijjcZX6ADefVcezkfy9Xw9PxnA3fd+y2/Na/LRvDVbZP3eb8YOCPSxgADQx83p1taeve22PHPTTb/570c/ysoFC7q19Mg6k+fOzRo77JA1dtpp5L/Vt/aBrdvzQD6Sy/Lt3NLVXgz6Ym/Ktvlo9s9WqePDoYPeD/vvbwEBoL/70/XdDc+fn2dvuSXNWweblw49d8cdGX7ooY7uY2iDDbLalluOvKSneUvf6ttum6GNN+7oGjVMdkvuS/O4YCFgdN1s/vFvHvO7bTYZ3Q1GEWi5gADQ8gPwQuU3DxR67le/SvOQoSYcNF8vHH744ax85JGRbxWsevLJrFq2LKtWrBiZatKUKZk0bVomrbVWmk/tT543L0Prr5+hF71o5B/51TbbLKu95CVpHuDjemGB5jcBp+cKfw54Aarm1/4nZh8/+b/wkTKCwP8ICAAOA4E+F2g+E3BmrvLBwOfpU/OBv+Ozl7/59/k5tr3+ExAA+q8ndkTg9wSabweclatzVq7ynID/1mm+539c9spx2dOn/f1/hsAYBASAMaC5hUCvBJqHBX06/9r6JwY2T/h7X/7CQ356dRCtW4WAAFBFGxXRJoHmscFNEGjruwOaZ/s3T/fzeN82nXq1ToSAADARquYkMMECzQuEzs8NI/+15VXCzSt9j8yuI/95sc8EHzDTt0JAAGhFmxVZq8Cl+VEuyPdzQ+6otcSRunbNljkiu+SA7FB1nYoj0E0BAaCb2tYiMAEC87MgF+cH+VL+PXfnkQlYoXdTbp55eWf+LAfntdk4c3u3ESsTqFBAAKiwqUpqp8CPc3cuyQ/T/FZgQRYPNMLczBz5af+g7Jjts/lA12LzBPpVQADo187YF4ExCnw3d+YbuTmX56d5JP3xjofRljIvs7NvXp39sl1en5eP9jbjCBAYg4AAMAY0txAYBIEf5q5cmVtzVW7NnXmwr7f88myYvbJN9s422TFb9PVebY5ALQICQC2dVAeB5xG4L4/lutyef8vtuT63Z1GW9YXVrEzLbtkqf56tsnu2yiZZty/2ZRME2iIgALSl0+okkOTWzM+N+UV+kF+m+Q3Bo1nUVZf1MmvkJ/zX5qXZOS/LNvESqK42wGIEfktAAHAcCLRUoHmWQPPGwVtzX36W+bkjD+bBPNFRjQ2zdrbMhnllNs422WTkTX2+w99RYpMRGLOAADBmOjcSqEvgySzN3Xk4d+WRNH82eCCP57+ycOS3BM23ChZnWRZneZ7N8Ejhq2coMzM1MzMtzaf2m5/u/yRz8uKsM/Lr/C0yL5tn/ayV6XVBqYZAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCAgAlTRSGQQIECBAoERAACjRMpYAAQIECFQiIABU0khlECBAgACBEgEBoETLWAIECBAgUImAAFBJI5VBgAABAgRKBASAEi1jCRAgQIBAJQICQCWNVAYBAgQIECgREABKtIwlQIAAAQKVCPw/ln1A03H7IUIAAAAASUVORK5CYII=", "model": "sonnet-3.5", "query": "What is the situation of the two circles compared to each other?", "response": "The image shows two solid circles - one red and one green. The circles are side by side, appearing next to each other horizontally on a plain white background.", "svgSource": "" }