|
import json |
|
|
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
This dataset determines whether a GitHub repository description relates to Japanese natural language processing (NLP). The labels are categorized as "Relevant (1)" and "Not Relevant (0)". |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/taishi-i/awesome-japanese-nlp-resources" |
|
_CITATION = "" |
|
_LICENSE = "other" |
|
|
|
|
|
class NagisaStopwordsDataset(datasets.GeneratorBasedBuilder): |
|
"""awesome-japanese-nlp-classification-dataset.""" |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="awesome-japanese-nlp-classification-dataset", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"label": datasets.features.ClassLabel(names=["0", "1"]), |
|
"text": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"created_at": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_url = "https://huggingface.co/datasets/taishi-i/awesome-japanese-nlp-classification-dataset/raw/main" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": dl_manager.download_and_extract( |
|
f"{data_url}/train.json" |
|
), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": dl_manager.download_and_extract( |
|
f"{data_url}/val.json" |
|
), |
|
"split": "val", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": dl_manager.download_and_extract( |
|
f"{data_url}/test.json" |
|
), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Generates examples.""" |
|
with open(filepath, "r") as file: |
|
data = json.load(file) |
|
for id_, row in enumerate(data): |
|
yield id_, { |
|
"label": row["label"], |
|
"text": row["text"], |
|
"url": row["url"], |
|
"created_at": row["created_at"], |
|
} |
|
|