Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 7,534 Bytes
94bed74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3851125
94bed74
 
 
3851125
94bed74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3851125
94bed74
 
3851125
 
94bed74
 
 
3851125
94bed74
 
3851125
 
94bed74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""Inspec benchmark dataset for keyphrase extraction an generation."""

import csv
import json
import os
import datasets

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{boudin-etal-2016-document,
    title = "How Document Pre-processing affects Keyphrase Extraction Performance",
    author = "Boudin, Florian  and
      Mougard, Hugo  and
      Cram, Damien",
    booktitle = "Proceedings of the 2nd Workshop on Noisy User-generated Text ({WNUT})",
    month = dec,
    year = "2016",
    address = "Osaka, Japan",
    publisher = "The COLING 2016 Organizing Committee",
    url = "https://aclanthology.org/W16-3917",
    pages = "121--128",
    abstract = "The SemEval-2010 benchmark dataset has brought renewed attention to the task of automatic keyphrase extraction. This dataset is made up of scientific articles that were automatically converted from PDF format to plain text and thus require careful preprocessing so that irrevelant spans of text do not negatively affect keyphrase extraction performance. In previous work, a wide range of document preprocessing techniques were described but their impact on the overall performance of keyphrase extraction models is still unexplored. Here, we re-assess the performance of several keyphrase extraction models and measure their robustness against increasingly sophisticated levels of document preprocessing.",
}
"""

# You can copy an official description
_DESCRIPTION = """\
Preprocessed SemEval-2010 Benchmark dataset for Keyphrase Generation.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://aclanthology.org/W16-3917.pdf"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "Apache 2.0 License"

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "test": "test.jsonl",
    "train": "train.jsonl"
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class SemEval(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data."),
    ]

    DEFAULT_CONFIG_NAME = "raw"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if self.config.name == "raw":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "abstract": datasets.Value("string"),
                    "keyphrases": datasets.features.Sequence(datasets.Value("string")),
                    "prmu": datasets.features.Sequence(datasets.Value("string")),
                    "lvl-1": datasets.Value("string"),
                    "lvl-2": datasets.Value("string"),
                    "lvl-3": datasets.Value("string"),
                    "lvl-4": datasets.Value("string"),
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir["train"]),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir["test"]),
                    "split": "test"
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                # Yields examples as (key, example) tuples
                yield key, {
                    "id": data["id"],
                    "title": data["title"],
                    "abstract": data["abstract"],
                    "keyphrases":  data["keyphrases"],
                    "prmu": data["prmu"],
                    "lvl-1": data["lvl-1"],
                    "lvl-2": data["lvl-2"],
                    "lvl-3": data["lvl-3"],
                    "lvl-4": data["lvl-4"],
                }