Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 5,011 Bytes
70c2b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "eba2ee81",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "No config specified, defaulting to: sem_eval/raw\n",
      "Reusing dataset sem_eval (/Users/boudin-f/.cache/huggingface/datasets/taln-ls2n___sem_eval/raw/1.0.0/b40e008b5c96137733e24d9d244d70aa1fe6353ee65e180d8f6948af4027fbe4)\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9379b6f5f5d1483ab184db7486ac67b5",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "dataset = load_dataset('taln-ls2n/semeval-2010-pre')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4ba72244",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c14c3725089d4b5284e36df4cf90d3da",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# keyphrases: 14.66\n",
      "% P: 40.11\n",
      "% R: 8.34\n",
      "% M: 27.12\n",
      "% U: 24.43\n"
     ]
    }
   ],
   "source": [
    "from tqdm.notebook import tqdm\n",
    "\n",
    "P, R, M, U, nb_kps = [], [], [], [], []\n",
    "    \n",
    "for sample in tqdm(dataset['test']):\n",
    "    nb_kps.append(len(sample[\"keyphrases\"]))\n",
    "    P.append(sample[\"prmu\"].count(\"P\") / nb_kps[-1])\n",
    "    R.append(sample[\"prmu\"].count(\"R\") / nb_kps[-1])\n",
    "    M.append(sample[\"prmu\"].count(\"M\") / nb_kps[-1])\n",
    "    U.append(sample[\"prmu\"].count(\"U\") / nb_kps[-1])\n",
    "        \n",
    "print(\"# keyphrases: {:.2f}\".format(sum(nb_kps)/len(nb_kps)))\n",
    "print(\"% P: {:.2f}\".format(sum(P)/len(P)*100))\n",
    "print(\"% R: {:.2f}\".format(sum(R)/len(R)*100))\n",
    "print(\"% M: {:.2f}\".format(sum(M)/len(M)*100))\n",
    "print(\"% U: {:.2f}\".format(sum(U)/len(U)*100))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "52dda817",
   "metadata": {},
   "outputs": [],
   "source": [
    "import spacy\n",
    "\n",
    "nlp = spacy.load(\"en_core_web_sm\")\n",
    "\n",
    "# https://spacy.io/usage/linguistic-features#native-tokenizer-additions\n",
    "\n",
    "from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER\n",
    "from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS\n",
    "from spacy.util import compile_infix_regex\n",
    "\n",
    "# Modify tokenizer infix patterns\n",
    "infixes = (\n",
    "    LIST_ELLIPSES\n",
    "    + LIST_ICONS\n",
    "    + [\n",
    "        r\"(?<=[0-9])[+\\-\\*^](?=[0-9-])\",\n",
    "        r\"(?<=[{al}{q}])\\.(?=[{au}{q}])\".format(\n",
    "            al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES\n",
    "        ),\n",
    "        r\"(?<=[{a}]),(?=[{a}])\".format(a=ALPHA),\n",
    "        # ✅ Commented out regex that splits on hyphens between letters:\n",
    "        # r\"(?<=[{a}])(?:{h})(?=[{a}])\".format(a=ALPHA, h=HYPHENS),\n",
    "        r\"(?<=[{a}0-9])[:<>=/](?=[{a}])\".format(a=ALPHA),\n",
    "    ]\n",
    ")\n",
    "\n",
    "infix_re = compile_infix_regex(infixes)\n",
    "nlp.tokenizer.infix_finditer = infix_re.finditer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "047ab1cc",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "209e7faf7c454aeabc936c07919ac1fe",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "avg doc len: 203.1\n"
     ]
    }
   ],
   "source": [
    "doc_len = []\n",
    "for sample in tqdm(dataset['test']):\n",
    "    doc_len.append(len(nlp(sample[\"title\"])) + len(nlp(sample[\"abstract\"])))\n",
    "        \n",
    "print(\"avg doc len: {:.1f}\".format(sum(doc_len)/len(doc_len)))        "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}