Datasets:

Languages:
French
Size:
n<1K
License:
File size: 5,326 Bytes
34c0079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "eba2ee81",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "No config specified, defaulting to: inspec/raw\n",
      "Reusing dataset inspec (/Users/boudin-f/.cache/huggingface/datasets/taln-ls2n___inspec/raw/1.0.0/0980ea60c840383eb282b6272baba681a578ed092f61438b008254c70d20f32b)\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2ad1b39fd3294bcfabe57a9acf24986e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "dataset = load_dataset('taln-ls2n/wikinews-fr-100')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4ba72244",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9bded16e4b0a43ad8907144bce073d0c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "statistics for test\n",
      "# keyphrases: 9.64\n",
      "% P: 95.91\n",
      "% R: 1.40\n",
      "% M: 0.85\n",
      "% U: 1.84\n"
     ]
    }
   ],
   "source": [
    "from tqdm.notebook import tqdm\n",
    "\n",
    "for split in ['test']:\n",
    "    \n",
    "    P, R, M, U, nb_kps = [], [], [], [], []\n",
    "    \n",
    "    for sample in tqdm(dataset[split]):\n",
    "        nb_kps.append(len(sample[\"keyphrases\"]))\n",
    "        P.append(sample[\"prmu\"].count(\"P\") / nb_kps[-1])\n",
    "        R.append(sample[\"prmu\"].count(\"R\") / nb_kps[-1])\n",
    "        M.append(sample[\"prmu\"].count(\"M\") / nb_kps[-1])\n",
    "        U.append(sample[\"prmu\"].count(\"U\") / nb_kps[-1])\n",
    "        \n",
    "    print(\"statistics for {}\".format(split))\n",
    "    print(\"# keyphrases: {:.2f}\".format(sum(nb_kps)/len(nb_kps)))\n",
    "    print(\"% P: {:.2f}\".format(sum(P)/len(P)*100))\n",
    "    print(\"% R: {:.2f}\".format(sum(R)/len(R)*100))\n",
    "    print(\"% M: {:.2f}\".format(sum(M)/len(M)*100))\n",
    "    print(\"% U: {:.2f}\".format(sum(U)/len(U)*100))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "52dda817",
   "metadata": {},
   "outputs": [],
   "source": [
    "import spacy\n",
    "\n",
    "nlp = spacy.load(\"fr_core_news_sm\")\n",
    "\n",
    "# https://spacy.io/usage/linguistic-features#native-tokenizer-additions\n",
    "\n",
    "from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER\n",
    "from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS\n",
    "from spacy.util import compile_infix_regex\n",
    "\n",
    "# Modify tokenizer infix patterns\n",
    "infixes = (\n",
    "    LIST_ELLIPSES\n",
    "    + LIST_ICONS\n",
    "    + [\n",
    "        r\"(?<=[0-9])[+\\-\\*^](?=[0-9-])\",\n",
    "        r\"(?<=[{al}{q}])\\.(?=[{au}{q}])\".format(\n",
    "            al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES\n",
    "        ),\n",
    "        r\"(?<=[{a}]),(?=[{a}])\".format(a=ALPHA),\n",
    "        # ✅ Commented out regex that splits on hyphens between letters:\n",
    "        # r\"(?<=[{a}])(?:{h})(?=[{a}])\".format(a=ALPHA, h=HYPHENS),\n",
    "        r\"(?<=[{a}0-9])[:<>=/](?=[{a}])\".format(a=ALPHA),\n",
    "    ]\n",
    ")\n",
    "\n",
    "infix_re = compile_infix_regex(infixes)\n",
    "nlp.tokenizer.infix_finditer = infix_re.finditer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "047ab1cc",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "135b8cd19d054319a445df200d82cc65",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "statistics for test\n",
      "avg doc len: 306.9\n"
     ]
    }
   ],
   "source": [
    "for split in ['test']:\n",
    "    doc_len = []\n",
    "    for sample in tqdm(dataset[split]):\n",
    "        doc_len.append(len(nlp(sample[\"title\"])) + len(nlp(sample[\"abstract\"])))\n",
    "        \n",
    "    print(\"statistics for {}\".format(split))\n",
    "    print(\"avg doc len: {:.1f}\".format(sum(doc_len)/len(doc_len)))\n",
    "        "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}