msis commited on
Commit
6840268
·
1 Parent(s): 73c56fb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -15
README.md CHANGED
@@ -88,11 +88,11 @@ train-eval-index:
88
 
89
  - **Homepage:** [Tarteel AI](https://www.tarteel.ai/)
90
  - **Repository:** [Needs More Information]
91
- - **Point of Contact:** [Nawar Halabi](mailto:ms.ibnseddik@tarteel.ai)
92
 
93
  ### Dataset Summary
94
 
95
- This Speech corpus has been developed as part of PhD work carried out by Nawar Halabi at the University of Southampton. The corpus was recorded in south Levantine Arabic (Damascian accent) using a professional studio. Synthesized speech as an output using this corpus has produced a high quality, natural voice.
96
 
97
  ### Supported Tasks and Leaderboards
98
 
@@ -106,31 +106,33 @@ The audio is in Arabic.
106
 
107
  ### Data Instances
108
 
109
- A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`.
 
 
110
  An example from the dataset is:
111
  ```
112
  {
113
- 'file': '/Users/username/.cache/huggingface/datasets/downloads/extracted/baebe85e2cb67579f6f88e7117a87888c1ace390f4f14cb6c3e585c517ad9db0/arabic-speech-corpus/wav/ARA NORM 0002.wav',
114
- 'audio': {'path': '/Users/username/.cache/huggingface/datasets/downloads/extracted/baebe85e2cb67579f6f88e7117a87888c1ace390f4f14cb6c3e585c517ad9db0/arabic-speech-corpus/wav/ARA NORM 0002.wav',
115
- 'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
116
- 'sampling_rate': 48000},
117
- 'orthographic': 'waraj~aHa Alt~aqoriyru Al~a*iy >aEad~ahu maEohadu >aboHaA^i haDabapi Alt~ibiti fiy Alo>akaAdiymiy~api AlS~iyniy~api liloEuluwmi - >ano tasotamir~a darajaAtu AloHaraArapi wamusotawayaAtu Alr~uTuwbapi fiy Alo<irotifaAEi TawaAla ha*aA Aloqarono',
118
- 'phonetic': "sil w a r a' jj A H a tt A q r ii0' r u0 ll a * i0 < a E a' dd a h u0 m a' E h a d u0 < a b H aa' ^ i0 h A D A' b a t i0 tt i1' b t i0 f i0 l < a k aa d ii0 m ii0' y a t i0 SS II0 n ii0' y a t i0 l u0 l E u0 l uu0' m i0 sil < a' n t a s t a m i0' rr a d a r a j aa' t u0 l H a r aa' r a t i0 w a m u0 s t a w a y aa' t u0 rr U0 T UU0' b a t i0 f i0 l Ah i0 r t i0 f aa' E i0 T A' w A l a h aa' * a l q A' r n sil",
119
- 'text': '\ufeffwaraj~aHa Alt~aqoriyru Al~aTHiy >aEad~ahu maEohadu >aboHaA^i haDabapi Alt~ibiti fiy Alo>akaAdiymiy~api AlS~iyniy~api liloEuluwmi - >ano tasotamir~a darajaAtu AloHaraArapi wamusotawayaAtu Alr~uTuwbapi fiy Alo<irotifaAEi TawaAla haTHaA Aloqarono'
 
 
120
  }
121
  ```
122
 
123
  ### Data Fields
124
 
125
- - file: A path to the downloaded audio file in .wav format.
126
-
127
  - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
128
 
129
- - text: the transcription of the audio file.
130
 
131
- - phonetic: the transcription in phonentics format.
132
 
133
- - orthographic: the transcriptions written in orthographic format.
134
 
135
  ### Data Splits
136
 
 
88
 
89
  - **Homepage:** [Tarteel AI](https://www.tarteel.ai/)
90
  - **Repository:** [Needs More Information]
91
+ - **Point of Contact:** [Mohamed Saad Ibn Seddik](mailto:ms.ibnseddik@tarteel.ai)
92
 
93
  ### Dataset Summary
94
 
95
+ This dataset is a collection of Quranic verses and their transcriptions, with diacritization, by different reciters.
96
 
97
  ### Supported Tasks and Leaderboards
98
 
 
106
 
107
  ### Data Instances
108
 
109
+ A typical data point comprises the audio file `audio`, and its transcription called `text`.
110
+ The `duration` is in seconds, and the author is `reciter`.
111
+
112
  An example from the dataset is:
113
  ```
114
  {
115
+ 'audio': {
116
+ 'path': None,
117
+ 'array': array([ 0. , 0. , 0. , ..., -0.00057983,
118
+ -0.00085449, -0.00061035]),
119
+ 'sampling_rate': 16000
120
+ },
121
+ 'duration': 6.478375,
122
+ 'text': 'بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ',
123
+ 'reciter': 'abdulsamad'
124
  }
125
  ```
126
 
127
  ### Data Fields
128
 
 
 
129
  - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
130
 
131
+ - text: The transcription of the audio file.
132
 
133
+ - duration: The duration of the audio file.
134
 
135
+ - reciter: The reciter of the verses.
136
 
137
  ### Data Splits
138