Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -88,11 +88,11 @@ train-eval-index:
|
|
88 |
|
89 |
- **Homepage:** [Tarteel AI](https://www.tarteel.ai/)
|
90 |
- **Repository:** [Needs More Information]
|
91 |
-
- **Point of Contact:** [
|
92 |
|
93 |
### Dataset Summary
|
94 |
|
95 |
-
This
|
96 |
|
97 |
### Supported Tasks and Leaderboards
|
98 |
|
@@ -106,31 +106,33 @@ The audio is in Arabic.
|
|
106 |
|
107 |
### Data Instances
|
108 |
|
109 |
-
A typical data point comprises the
|
|
|
|
|
110 |
An example from the dataset is:
|
111 |
```
|
112 |
{
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
}
|
121 |
```
|
122 |
|
123 |
### Data Fields
|
124 |
|
125 |
-
- file: A path to the downloaded audio file in .wav format.
|
126 |
-
|
127 |
- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
|
128 |
|
129 |
-
- text:
|
130 |
|
131 |
-
-
|
132 |
|
133 |
-
-
|
134 |
|
135 |
### Data Splits
|
136 |
|
|
|
88 |
|
89 |
- **Homepage:** [Tarteel AI](https://www.tarteel.ai/)
|
90 |
- **Repository:** [Needs More Information]
|
91 |
+
- **Point of Contact:** [Mohamed Saad Ibn Seddik](mailto:ms.ibnseddik@tarteel.ai)
|
92 |
|
93 |
### Dataset Summary
|
94 |
|
95 |
+
This dataset is a collection of Quranic verses and their transcriptions, with diacritization, by different reciters.
|
96 |
|
97 |
### Supported Tasks and Leaderboards
|
98 |
|
|
|
106 |
|
107 |
### Data Instances
|
108 |
|
109 |
+
A typical data point comprises the audio file `audio`, and its transcription called `text`.
|
110 |
+
The `duration` is in seconds, and the author is `reciter`.
|
111 |
+
|
112 |
An example from the dataset is:
|
113 |
```
|
114 |
{
|
115 |
+
'audio': {
|
116 |
+
'path': None,
|
117 |
+
'array': array([ 0. , 0. , 0. , ..., -0.00057983,
|
118 |
+
-0.00085449, -0.00061035]),
|
119 |
+
'sampling_rate': 16000
|
120 |
+
},
|
121 |
+
'duration': 6.478375,
|
122 |
+
'text': 'بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ',
|
123 |
+
'reciter': 'abdulsamad'
|
124 |
}
|
125 |
```
|
126 |
|
127 |
### Data Fields
|
128 |
|
|
|
|
|
129 |
- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
|
130 |
|
131 |
+
- text: The transcription of the audio file.
|
132 |
|
133 |
+
- duration: The duration of the audio file.
|
134 |
|
135 |
+
- reciter: The reciter of the verses.
|
136 |
|
137 |
### Data Splits
|
138 |
|