Datasets:
License:
Matīss
commited on
Commit
•
b6cfcca
1
Parent(s):
cbff5e1
Upload liv4ever.py
Browse files- liv4ever.py +76 -41
liv4ever.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# coding=utf-8
|
2 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
@@ -12,14 +11,19 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
|
|
15 |
"""Liv4ever dataset."""
|
16 |
|
17 |
|
|
|
18 |
import json
|
|
|
19 |
|
20 |
import datasets
|
21 |
|
22 |
|
|
|
|
|
23 |
_CITATION = """\
|
24 |
@inproceedings{rikters-etal-2022,
|
25 |
title = "Machine Translation for Livonian: Catering for 20 Speakers",
|
@@ -35,7 +39,8 @@ _CITATION = """\
|
|
35 |
}
|
36 |
"""
|
37 |
|
38 |
-
|
|
|
39 |
_DESCRIPTION = """\
|
40 |
Livonian is one of the most endangered languages in Europe with just a tiny handful of speakers and virtually no publicly available corpora.
|
41 |
In this paper we tackle the task of developing neural machine translation (NMT) between Livonian and English, with a two-fold aim: on one hand,
|
@@ -52,88 +57,118 @@ Fields:
|
|
52 |
- liv: sentence in Livonian
|
53 |
"""
|
54 |
|
55 |
-
|
|
|
56 |
|
|
|
57 |
_LICENSE = "CC BY-NC-SA 4.0"
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
"
|
64 |
-
"
|
|
|
65 |
}
|
66 |
|
67 |
|
|
|
68 |
class liv4ever(datasets.GeneratorBasedBuilder):
|
69 |
"""Liv4ever dataset."""
|
70 |
|
71 |
VERSION = datasets.Version("1.0.0")
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def _info(self):
|
|
|
74 |
features = datasets.Features(
|
75 |
{
|
76 |
"source": datasets.Value("string"),
|
77 |
"en": datasets.Value("string"),
|
78 |
-
"liv": datasets.Value("string")
|
|
|
79 |
}
|
80 |
)
|
81 |
return datasets.DatasetInfo(
|
|
|
82 |
description=_DESCRIPTION,
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
homepage=_HOMEPAGE,
|
|
|
86 |
license=_LICENSE,
|
|
|
87 |
citation=_CITATION,
|
88 |
)
|
89 |
|
90 |
def _split_generators(self, dl_manager):
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
94 |
return [
|
95 |
datasets.SplitGenerator(
|
96 |
name=datasets.Split.TRAIN,
|
|
|
97 |
gen_kwargs={
|
98 |
-
"filepath": data_dir
|
99 |
"split": "train",
|
100 |
},
|
101 |
),
|
102 |
datasets.SplitGenerator(
|
103 |
name=datasets.Split.TEST,
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
),
|
106 |
datasets.SplitGenerator(
|
107 |
name=datasets.Split.VALIDATION,
|
|
|
108 |
gen_kwargs={
|
109 |
-
"filepath": data_dir
|
110 |
"split": "dev",
|
111 |
},
|
112 |
),
|
113 |
]
|
114 |
|
|
|
115 |
def _generate_examples(self, filepath, split):
|
116 |
-
|
117 |
-
|
118 |
with open(filepath, encoding="utf-8") as f:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
for turn in sentences:
|
129 |
-
i = i+1
|
130 |
-
sent_no = i
|
131 |
-
en = dialogue["en"]
|
132 |
-
liv = dialogue["liv"]
|
133 |
-
|
134 |
-
yield f"{sent_no}", {
|
135 |
-
"no": sent_no,
|
136 |
-
"source": source,
|
137 |
-
"en": en,
|
138 |
-
"liv": liv,
|
139 |
-
}
|
|
|
|
|
1 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
"""Liv4ever dataset."""
|
16 |
|
17 |
|
18 |
+
import csv
|
19 |
import json
|
20 |
+
import os
|
21 |
|
22 |
import datasets
|
23 |
|
24 |
|
25 |
+
# TODO: Add BibTeX citation
|
26 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
_CITATION = """\
|
28 |
@inproceedings{rikters-etal-2022,
|
29 |
title = "Machine Translation for Livonian: Catering for 20 Speakers",
|
|
|
39 |
}
|
40 |
"""
|
41 |
|
42 |
+
# TODO: Add description of the dataset here
|
43 |
+
# You can copy an official description
|
44 |
_DESCRIPTION = """\
|
45 |
Livonian is one of the most endangered languages in Europe with just a tiny handful of speakers and virtually no publicly available corpora.
|
46 |
In this paper we tackle the task of developing neural machine translation (NMT) between Livonian and English, with a two-fold aim: on one hand,
|
|
|
57 |
- liv: sentence in Livonian
|
58 |
"""
|
59 |
|
60 |
+
# TODO: Add a link to an official homepage for the dataset here
|
61 |
+
_HOMEPAGE = "https://huggingface.co/datasets/tartuNLP/liv4ever"
|
62 |
|
63 |
+
# TODO: Add the licence for the dataset here if you can find it
|
64 |
_LICENSE = "CC BY-NC-SA 4.0"
|
65 |
|
66 |
+
# TODO: Add link to the official dataset URLs here
|
67 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
68 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
69 |
+
_URLS = {
|
70 |
+
"train": "https://huggingface.co/datasets/tartuNLP/liv4ever/raw/main/train.json",
|
71 |
+
"dev": "https://huggingface.co/datasets/tartuNLP/liv4ever/raw/main/dev.json",
|
72 |
+
"test": "https://huggingface.co/datasets/tartuNLP/liv4ever/raw/main/test.json",
|
73 |
}
|
74 |
|
75 |
|
76 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
77 |
class liv4ever(datasets.GeneratorBasedBuilder):
|
78 |
"""Liv4ever dataset."""
|
79 |
|
80 |
VERSION = datasets.Version("1.0.0")
|
81 |
|
82 |
+
# This is an example of a dataset with multiple configurations.
|
83 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
84 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
85 |
+
|
86 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
87 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
88 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
89 |
+
|
90 |
+
# You will be able to load one or the other configurations in the following list with
|
91 |
+
# data = datasets.load_dataset('my_dataset', 'train')
|
92 |
+
# data = datasets.load_dataset('my_dataset', 'dev')
|
93 |
+
BUILDER_CONFIGS = [
|
94 |
+
datasets.BuilderConfig(name="train", version=VERSION, description="This part of my dataset covers a first domain"),
|
95 |
+
datasets.BuilderConfig(name="dev", version=VERSION, description="This part of my dataset covers a second domain"),
|
96 |
+
]
|
97 |
+
|
98 |
+
DEFAULT_CONFIG_NAME = "train" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
99 |
+
|
100 |
def _info(self):
|
101 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
102 |
features = datasets.Features(
|
103 |
{
|
104 |
"source": datasets.Value("string"),
|
105 |
"en": datasets.Value("string"),
|
106 |
+
"liv": datasets.Value("string")
|
107 |
+
# These are the features of your dataset like images, labels ...
|
108 |
}
|
109 |
)
|
110 |
return datasets.DatasetInfo(
|
111 |
+
# This is the description that will appear on the datasets page.
|
112 |
description=_DESCRIPTION,
|
113 |
+
# This defines the different columns of the dataset and their types
|
114 |
+
features=features, # Here we define them above because they are different between the two configurations
|
115 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
116 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
117 |
+
# supervised_keys=("sentence", "label"),
|
118 |
+
# Homepage of the dataset for documentation
|
119 |
homepage=_HOMEPAGE,
|
120 |
+
# License for the dataset if available
|
121 |
license=_LICENSE,
|
122 |
+
# Citation for the dataset
|
123 |
citation=_CITATION,
|
124 |
)
|
125 |
|
126 |
def _split_generators(self, dl_manager):
|
127 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
128 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
129 |
+
|
130 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
131 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
132 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
133 |
+
urls = _URLS[self.config.name]
|
134 |
+
data_dir = dl_manager.download_and_extract(urls)
|
135 |
return [
|
136 |
datasets.SplitGenerator(
|
137 |
name=datasets.Split.TRAIN,
|
138 |
+
# These kwargs will be passed to _generate_examples
|
139 |
gen_kwargs={
|
140 |
+
"filepath": os.path.join(data_dir, "train.jsonl"),
|
141 |
"split": "train",
|
142 |
},
|
143 |
),
|
144 |
datasets.SplitGenerator(
|
145 |
name=datasets.Split.TEST,
|
146 |
+
# These kwargs will be passed to _generate_examples
|
147 |
+
gen_kwargs={
|
148 |
+
"filepath": os.path.join(data_dir, "test.jsonl"),
|
149 |
+
"split": "test"
|
150 |
+
},
|
151 |
),
|
152 |
datasets.SplitGenerator(
|
153 |
name=datasets.Split.VALIDATION,
|
154 |
+
# These kwargs will be passed to _generate_examples
|
155 |
gen_kwargs={
|
156 |
+
"filepath": os.path.join(data_dir, "dev.jsonl"),
|
157 |
"split": "dev",
|
158 |
},
|
159 |
),
|
160 |
]
|
161 |
|
162 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
163 |
def _generate_examples(self, filepath, split):
|
164 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
165 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
166 |
with open(filepath, encoding="utf-8") as f:
|
167 |
+
for key, row in enumerate(f):
|
168 |
+
data = json.loads(row)
|
169 |
+
# Yields examples as (key, example) tuples
|
170 |
+
yield key, {
|
171 |
+
"source": data["source"],
|
172 |
+
"en": data["en"],
|
173 |
+
"liv": data["liv"],
|
174 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|