Datasets:

Modalities:
Text
Formats:
json
Libraries:
Datasets
Dask
c4tasky / preptasky.sh
Muennighoff's picture
Track lfs
44bfcd5
#!/bin/bash
#SBATCH --job-name=tasky # job name
#SBATCH --ntasks=1 # number of MP tasks
#SBATCH --nodes=1
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --time=20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --account=ajs@cpu
#SBATCH --partition=cpu_p1
#SBATCH --qos=qos_cpu-t3
set -x -e
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/tr13f-6B3-ml-t0/Megatron-DeepSpeed
TOKENIZER_PATH="bigscience/tokenizer"
cat c4tasky_*.jsonl > merged_dups_c4tasky.jsonl
sort -u merged_dups_c4tasky.jsonl | shuf > merged_c4tasky.jsonl
cd $MEGATRON_DEEPSPEED_REPO
python tools/preprocess_data.py \
--input /gpfswork/rech/six/commun/code/turku/tasky/merged_c4tasky.jsonl \
--output-prefix /gpfswork/rech/six/commun/code/turku/tasky/tasky_bloom \
--dataset-impl mmap \
--json-key text \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path $TOKENIZER_PATH \
--workers 35