Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
"""TODO(commonsense_qa): Add a description here.""" | |
import json | |
import datasets | |
# TODO(commonsense_qa): BibTeX citation | |
_CITATION = """\ | |
@InProceedings{commonsense_QA, | |
title={COMMONSENSEQA: A Question Answering Challenge Targeting Commonsense Knowledge}, | |
author={Alon, Talmor and Jonathan, Herzig and Nicholas, Lourie and Jonathan ,Berant}, | |
journal={arXiv preprint arXiv:1811.00937v2}, | |
year={2019} | |
""" | |
# TODO(commonsense_qa): | |
_DESCRIPTION = """\ | |
CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge | |
to predict the correct answers . It contains 12,102 questions with one correct answer and four distractor answers. | |
The dataset is provided in two major training/validation/testing set splits: "Random split" which is the main evaluation | |
split, and "Question token split", see paper for details. | |
""" | |
_URL = "https://s3.amazonaws.com/commensenseqa/" | |
_URLS = { | |
"train": _URL + "train_rand_split.jsonl", | |
"dev": _URL + "dev_rand_split.jsonl", | |
"test": _URL + "test_rand_split_no_answers.jsonl", | |
} | |
class CommonsenseQa(datasets.GeneratorBasedBuilder): | |
"""TODO(commonsense_qa): Short description of my dataset.""" | |
# TODO(commonsense_qa): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# These are the features of your dataset like images, labels ... | |
features = datasets.Features( | |
{ | |
"answerKey": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"choices": datasets.features.Sequence( | |
{ | |
"label": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
} | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=features, | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://www.tau-datasets.org/commonsenseqa", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
download_urls = _URLS | |
downloaded_files = dl_manager.download_and_extract(download_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "split": "train"} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": downloaded_files["dev"], | |
"split": "dev", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": downloaded_files["test"], | |
"split": "test", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
# TODO(commonsense_qa): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
question = data["question"] | |
choices = question["choices"] | |
labels = [label["label"] for label in choices] | |
texts = [text["text"] for text in choices] | |
stem = question["stem"] | |
if split == "test": | |
answerkey = "" | |
else: | |
answerkey = data["answerKey"] | |
yield id_, { | |
"answerKey": answerkey, | |
"question": stem, | |
"choices": {"label": labels, "text": texts}, | |
} | |