Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Commit
•
d902145
1
Parent(s):
698ee26
Add missing features to commonsense_qa dataset (#4280)
Browse files* Fix homepage URL
* Clean code
* Add missing features
* Update metadata
* Fix dataset card tags
* Update dummy data
* Fix style
Commit from https://github.com/huggingface/datasets/commit/bc55315c2ab708cbe295e990160cd2bb7eefaccc
- README.md +57 -29
- commonsense_qa.py +50 -64
- dataset_infos.json +1 -1
- dummy/{0.1.0 → 1.0.0}/dummy_data.zip +0 -0
README.md
CHANGED
@@ -1,13 +1,30 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
languages:
|
3 |
- en
|
4 |
-
|
|
|
|
|
|
|
5 |
pretty_name: CommonsenseQA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
# Dataset Card for "commonsense_qa"
|
9 |
|
10 |
## Table of Contents
|
|
|
11 |
- [Dataset Description](#dataset-description)
|
12 |
- [Dataset Summary](#dataset-summary)
|
13 |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
@@ -33,9 +50,9 @@ pretty_name: CommonsenseQA
|
|
33 |
|
34 |
## Dataset Description
|
35 |
|
36 |
-
- **Homepage:**
|
37 |
-
- **Repository:**
|
38 |
-
- **Paper:**
|
39 |
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
40 |
- **Size of downloaded dataset files:** 4.46 MB
|
41 |
- **Size of the generated dataset:** 2.08 MB
|
@@ -44,9 +61,9 @@ pretty_name: CommonsenseQA
|
|
44 |
### Dataset Summary
|
45 |
|
46 |
CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
### Supported Tasks and Leaderboards
|
52 |
|
@@ -54,7 +71,7 @@ CommonsenseQA is a new multiple-choice question answering dataset that requires
|
|
54 |
|
55 |
### Languages
|
56 |
|
57 |
-
|
58 |
|
59 |
## Dataset Structure
|
60 |
|
@@ -66,16 +83,14 @@ CommonsenseQA is a new multiple-choice question answering dataset that requires
|
|
66 |
- **Size of the generated dataset:** 2.08 MB
|
67 |
- **Total amount of disk used:** 6.54 MB
|
68 |
|
69 |
-
An example of 'train' looks as follows
|
70 |
```
|
71 |
-
{
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
"question": "In what Spanish speaking North American country can you get a great cup of coffee?"
|
78 |
-
}
|
79 |
```
|
80 |
|
81 |
### Data Fields
|
@@ -83,17 +98,19 @@ An example of 'train' looks as follows.
|
|
83 |
The data fields are the same among all splits.
|
84 |
|
85 |
#### default
|
86 |
-
- `
|
87 |
- `question`: a `string` feature.
|
|
|
88 |
- `choices`: a dictionary feature containing:
|
89 |
- `label`: a `string` feature.
|
90 |
- `text`: a `string` feature.
|
|
|
91 |
|
92 |
### Data Splits
|
93 |
|
94 |
-
| name
|
95 |
-
|
96 |
-
|default|
|
97 |
|
98 |
## Dataset Creation
|
99 |
|
@@ -147,20 +164,31 @@ The data fields are the same among all splits.
|
|
147 |
|
148 |
### Licensing Information
|
149 |
|
150 |
-
|
151 |
|
152 |
### Citation Information
|
153 |
|
154 |
```
|
155 |
-
@
|
156 |
-
title={
|
157 |
-
author=
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
```
|
162 |
|
163 |
-
|
164 |
### Contributions
|
165 |
|
166 |
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@albertvillanova](https://github.com/albertvillanova), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
languages:
|
7 |
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
pretty_name: CommonsenseQA
|
13 |
+
size_categories:
|
14 |
+
- 1K<n<10K
|
15 |
+
source_datasets:
|
16 |
+
- original
|
17 |
+
task_categories:
|
18 |
+
- question-answering
|
19 |
+
task_ids:
|
20 |
+
- open-domain-qa
|
21 |
+
paperswithcode_id: commonsenseqa
|
22 |
---
|
23 |
|
24 |
# Dataset Card for "commonsense_qa"
|
25 |
|
26 |
## Table of Contents
|
27 |
+
- [Table of Contents](#table-of-contents)
|
28 |
- [Dataset Description](#dataset-description)
|
29 |
- [Dataset Summary](#dataset-summary)
|
30 |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
|
|
50 |
|
51 |
## Dataset Description
|
52 |
|
53 |
+
- **Homepage:** https://www.tau-nlp.org/commonsenseqa
|
54 |
+
- **Repository:** https://github.com/jonathanherzig/commonsenseqa
|
55 |
+
- **Paper:** https://arxiv.org/abs/1811.00937
|
56 |
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
57 |
- **Size of downloaded dataset files:** 4.46 MB
|
58 |
- **Size of the generated dataset:** 2.08 MB
|
|
|
61 |
### Dataset Summary
|
62 |
|
63 |
CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge
|
64 |
+
to predict the correct answers . It contains 12,102 questions with one correct answer and four distractor answers.
|
65 |
+
The dataset is provided in two major training/validation/testing set splits: "Random split" which is the main evaluation
|
66 |
+
split, and "Question token split", see paper for details.
|
67 |
|
68 |
### Supported Tasks and Leaderboards
|
69 |
|
|
|
71 |
|
72 |
### Languages
|
73 |
|
74 |
+
The dataset is in English (`en`).
|
75 |
|
76 |
## Dataset Structure
|
77 |
|
|
|
83 |
- **Size of the generated dataset:** 2.08 MB
|
84 |
- **Total amount of disk used:** 6.54 MB
|
85 |
|
86 |
+
An example of 'train' looks as follows:
|
87 |
```
|
88 |
+
{'id': '075e483d21c29a511267ef62bedc0461',
|
89 |
+
'question': 'The sanctions against the school were a punishing blow, and they seemed to what the efforts the school had made to change?',
|
90 |
+
'question_concept': 'punishing',
|
91 |
+
'choices': {'label': ['A', 'B', 'C', 'D', 'E'],
|
92 |
+
'text': ['ignore', 'enforce', 'authoritarian', 'yell at', 'avoid']},
|
93 |
+
'answerKey': 'A'}
|
|
|
|
|
94 |
```
|
95 |
|
96 |
### Data Fields
|
|
|
98 |
The data fields are the same among all splits.
|
99 |
|
100 |
#### default
|
101 |
+
- `id` (`str`): Unique ID.
|
102 |
- `question`: a `string` feature.
|
103 |
+
- `question_concept` (`str`): ConceptNet concept associated to the question.
|
104 |
- `choices`: a dictionary feature containing:
|
105 |
- `label`: a `string` feature.
|
106 |
- `text`: a `string` feature.
|
107 |
+
- `answerKey`: a `string` feature.
|
108 |
|
109 |
### Data Splits
|
110 |
|
111 |
+
| name | train | validation | test |
|
112 |
+
|---------|------:|-----------:|-----:|
|
113 |
+
| default | 9741 | 1221 | 1140 |
|
114 |
|
115 |
## Dataset Creation
|
116 |
|
|
|
164 |
|
165 |
### Licensing Information
|
166 |
|
167 |
+
Unknown.
|
168 |
|
169 |
### Citation Information
|
170 |
|
171 |
```
|
172 |
+
@inproceedings{talmor-etal-2019-commonsenseqa,
|
173 |
+
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
|
174 |
+
author = "Talmor, Alon and
|
175 |
+
Herzig, Jonathan and
|
176 |
+
Lourie, Nicholas and
|
177 |
+
Berant, Jonathan",
|
178 |
+
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
|
179 |
+
month = jun,
|
180 |
+
year = "2019",
|
181 |
+
address = "Minneapolis, Minnesota",
|
182 |
+
publisher = "Association for Computational Linguistics",
|
183 |
+
url = "https://aclanthology.org/N19-1421",
|
184 |
+
doi = "10.18653/v1/N19-1421",
|
185 |
+
pages = "4149--4158",
|
186 |
+
archivePrefix = "arXiv",
|
187 |
+
eprint = "1811.00937",
|
188 |
+
primaryClass = "cs",
|
189 |
+
}
|
190 |
```
|
191 |
|
|
|
192 |
### Contributions
|
193 |
|
194 |
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@albertvillanova](https://github.com/albertvillanova), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
|
commonsense_qa.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
"""
|
2 |
|
3 |
|
4 |
import json
|
@@ -6,111 +6,97 @@ import json
|
|
6 |
import datasets
|
7 |
|
8 |
|
9 |
-
|
10 |
-
_CITATION = """\
|
11 |
-
@InProceedings{commonsense_QA,
|
12 |
-
title={COMMONSENSEQA: A Question Answering Challenge Targeting Commonsense Knowledge},
|
13 |
-
author={Alon, Talmor and Jonathan, Herzig and Nicholas, Lourie and Jonathan ,Berant},
|
14 |
-
journal={arXiv preprint arXiv:1811.00937v2},
|
15 |
-
year={2019}
|
16 |
-
|
17 |
-
"""
|
18 |
|
19 |
-
# TODO(commonsense_qa):
|
20 |
_DESCRIPTION = """\
|
21 |
CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
"""
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
_URLS = {
|
29 |
-
"train": _URL
|
30 |
-
"
|
31 |
-
"test": _URL
|
32 |
}
|
33 |
|
34 |
|
35 |
class CommonsenseQa(datasets.GeneratorBasedBuilder):
|
36 |
-
"""
|
37 |
|
38 |
-
|
39 |
-
VERSION = datasets.Version("0.1.0")
|
40 |
|
41 |
def _info(self):
|
42 |
-
# These are the features of your dataset like images, labels ...
|
43 |
features = datasets.Features(
|
44 |
{
|
45 |
-
"
|
46 |
"question": datasets.Value("string"),
|
|
|
47 |
"choices": datasets.features.Sequence(
|
48 |
{
|
49 |
"label": datasets.Value("string"),
|
50 |
"text": datasets.Value("string"),
|
51 |
}
|
52 |
),
|
|
|
53 |
}
|
54 |
)
|
55 |
return datasets.DatasetInfo(
|
56 |
-
# This is the description that will appear on the datasets page.
|
57 |
description=_DESCRIPTION,
|
58 |
-
# datasets.features.FeatureConnectors
|
59 |
features=features,
|
60 |
-
|
61 |
-
# specify them here. They'll be used if as_supervised=True in
|
62 |
-
# builder.as_dataset.
|
63 |
-
supervised_keys=None,
|
64 |
-
# Homepage of the dataset for documentation
|
65 |
-
homepage="https://www.tau-datasets.org/commonsenseqa",
|
66 |
citation=_CITATION,
|
67 |
)
|
68 |
|
69 |
def _split_generators(self, dl_manager):
|
70 |
"""Returns SplitGenerators."""
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
downloaded_files = dl_manager.download_and_extract(download_urls)
|
75 |
-
|
76 |
return [
|
77 |
datasets.SplitGenerator(
|
78 |
-
name=
|
79 |
-
),
|
80 |
-
datasets.SplitGenerator(
|
81 |
-
name=datasets.Split.VALIDATION,
|
82 |
gen_kwargs={
|
83 |
-
"filepath":
|
84 |
-
"split": "dev",
|
85 |
},
|
86 |
-
)
|
87 |
-
|
88 |
-
name=datasets.Split.TEST,
|
89 |
-
gen_kwargs={
|
90 |
-
"filepath": downloaded_files["test"],
|
91 |
-
"split": "test",
|
92 |
-
},
|
93 |
-
),
|
94 |
]
|
95 |
|
96 |
-
def _generate_examples(self, filepath
|
97 |
"""Yields examples."""
|
98 |
-
# TODO(commonsense_qa): Yields (key, example) tuples from the dataset
|
99 |
with open(filepath, encoding="utf-8") as f:
|
100 |
-
for
|
101 |
data = json.loads(row)
|
102 |
-
|
103 |
-
choices = question["choices"]
|
104 |
labels = [label["label"] for label in choices]
|
105 |
texts = [text["text"] for text in choices]
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
answerkey = data["answerKey"]
|
111 |
-
|
112 |
-
yield id_, {
|
113 |
-
"answerKey": answerkey,
|
114 |
-
"question": stem,
|
115 |
"choices": {"label": labels, "text": texts},
|
|
|
116 |
}
|
|
|
1 |
+
"""CommonsenseQA dataset."""
|
2 |
|
3 |
|
4 |
import json
|
|
|
6 |
import datasets
|
7 |
|
8 |
|
9 |
+
_HOMEPAGE = "https://www.tau-nlp.org/commonsenseqa"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
_DESCRIPTION = """\
|
12 |
CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge
|
13 |
+
to predict the correct answers . It contains 12,102 questions with one correct answer and four distractor answers.
|
14 |
+
The dataset is provided in two major training/validation/testing set splits: "Random split" which is the main evaluation
|
15 |
+
split, and "Question token split", see paper for details.
|
16 |
"""
|
17 |
|
18 |
+
_CITATION = """\
|
19 |
+
@inproceedings{talmor-etal-2019-commonsenseqa,
|
20 |
+
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
|
21 |
+
author = "Talmor, Alon and
|
22 |
+
Herzig, Jonathan and
|
23 |
+
Lourie, Nicholas and
|
24 |
+
Berant, Jonathan",
|
25 |
+
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
|
26 |
+
month = jun,
|
27 |
+
year = "2019",
|
28 |
+
address = "Minneapolis, Minnesota",
|
29 |
+
publisher = "Association for Computational Linguistics",
|
30 |
+
url = "https://aclanthology.org/N19-1421",
|
31 |
+
doi = "10.18653/v1/N19-1421",
|
32 |
+
pages = "4149--4158",
|
33 |
+
archivePrefix = "arXiv",
|
34 |
+
eprint = "1811.00937",
|
35 |
+
primaryClass = "cs",
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
_URL = "https://s3.amazonaws.com/commensenseqa"
|
40 |
_URLS = {
|
41 |
+
"train": f"{_URL}/train_rand_split.jsonl",
|
42 |
+
"validation": f"{_URL}/dev_rand_split.jsonl",
|
43 |
+
"test": f"{_URL}/test_rand_split_no_answers.jsonl",
|
44 |
}
|
45 |
|
46 |
|
47 |
class CommonsenseQa(datasets.GeneratorBasedBuilder):
|
48 |
+
"""CommonsenseQA dataset."""
|
49 |
|
50 |
+
VERSION = datasets.Version("1.0.0")
|
|
|
51 |
|
52 |
def _info(self):
|
|
|
53 |
features = datasets.Features(
|
54 |
{
|
55 |
+
"id": datasets.Value("string"),
|
56 |
"question": datasets.Value("string"),
|
57 |
+
"question_concept": datasets.Value("string"),
|
58 |
"choices": datasets.features.Sequence(
|
59 |
{
|
60 |
"label": datasets.Value("string"),
|
61 |
"text": datasets.Value("string"),
|
62 |
}
|
63 |
),
|
64 |
+
"answerKey": datasets.Value("string"),
|
65 |
}
|
66 |
)
|
67 |
return datasets.DatasetInfo(
|
|
|
68 |
description=_DESCRIPTION,
|
|
|
69 |
features=features,
|
70 |
+
homepage=_HOMEPAGE,
|
|
|
|
|
|
|
|
|
|
|
71 |
citation=_CITATION,
|
72 |
)
|
73 |
|
74 |
def _split_generators(self, dl_manager):
|
75 |
"""Returns SplitGenerators."""
|
76 |
+
filepaths = dl_manager.download_and_extract(_URLS)
|
77 |
+
splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
|
|
|
|
|
|
|
78 |
return [
|
79 |
datasets.SplitGenerator(
|
80 |
+
name=split,
|
|
|
|
|
|
|
81 |
gen_kwargs={
|
82 |
+
"filepath": filepaths[split],
|
|
|
83 |
},
|
84 |
+
)
|
85 |
+
for split in splits
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
]
|
87 |
|
88 |
+
def _generate_examples(self, filepath):
|
89 |
"""Yields examples."""
|
|
|
90 |
with open(filepath, encoding="utf-8") as f:
|
91 |
+
for uid, row in enumerate(f):
|
92 |
data = json.loads(row)
|
93 |
+
choices = data["question"]["choices"]
|
|
|
94 |
labels = [label["label"] for label in choices]
|
95 |
texts = [text["text"] for text in choices]
|
96 |
+
yield uid, {
|
97 |
+
"id": data["id"],
|
98 |
+
"question": data["question"]["stem"],
|
99 |
+
"question_concept": data["question"]["question_concept"],
|
|
|
|
|
|
|
|
|
|
|
100 |
"choices": {"label": labels, "text": texts},
|
101 |
+
"answerKey": data.get("answerKey", ""),
|
102 |
}
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge\
|
|
|
1 |
+
{"default": {"description": "CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge\nto predict the correct answers . It contains 12,102 questions with one correct answer and four distractor answers.\nThe dataset is provided in two major training/validation/testing set splits: \"Random split\" which is the main evaluation\nsplit, and \"Question token split\", see paper for details.\n", "citation": "@inproceedings{talmor-etal-2019-commonsenseqa,\n title = \"{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge\",\n author = \"Talmor, Alon and\n Herzig, Jonathan and\n Lourie, Nicholas and\n Berant, Jonathan\",\n booktitle = \"Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)\",\n month = jun,\n year = \"2019\",\n address = \"Minneapolis, Minnesota\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/N19-1421\",\n doi = \"10.18653/v1/N19-1421\",\n pages = \"4149--4158\",\n archivePrefix = \"arXiv\",\n eprint = \"1811.00937\",\n primaryClass = \"cs\",\n}\n", "homepage": "https://www.tau-nlp.org/commonsenseqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_concept": {"dtype": "string", "id": null, "_type": "Value"}, "choices": {"feature": {"label": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "answerKey": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "commonsense_qa", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2209044, "num_examples": 9741, "dataset_name": "commonsense_qa"}, "validation": {"name": "validation", "num_bytes": 274033, "num_examples": 1221, "dataset_name": "commonsense_qa"}, "test": {"name": "test", "num_bytes": 258017, "num_examples": 1140, "dataset_name": "commonsense_qa"}}, "download_checksums": {"https://s3.amazonaws.com/commensenseqa/train_rand_split.jsonl": {"num_bytes": 3785890, "checksum": "58ffa3c8472410e24b8c43f423d89c8a003d8284698a6ed7874355dedd09a2fb"}, "https://s3.amazonaws.com/commensenseqa/dev_rand_split.jsonl": {"num_bytes": 471653, "checksum": "3210497fdaae614ac085d9eb873dd7f4d49b6f965a93adadc803e1229fd8a02a"}, "https://s3.amazonaws.com/commensenseqa/test_rand_split_no_answers.jsonl": {"num_bytes": 423148, "checksum": "b426896d71a9cd064cf01cfaf6e920817c51701ef66028883ac1af2e73ad5f29"}}, "download_size": 4680691, "post_processing_size": null, "dataset_size": 2741094, "size_in_bytes": 7421785}}
|
dummy/{0.1.0 → 1.0.0}/dummy_data.zip
RENAMED
File without changes
|