Datasets:
tau
/

Modalities:
Text
Libraries:
Datasets
Uri commited on
Commit
1ade361
·
1 Parent(s): 9f3af66

Update fs.py

Browse files
Files changed (1) hide show
  1. fs.py +95 -22
fs.py CHANGED
@@ -6,7 +6,7 @@ import json
6
  import os
7
  import datasets
8
  from datasets import load_dataset
9
- from transformers import AutoTokenizer # TODO comment out when getting rid of __main__:
10
 
11
  _FS_CITATION = """
12
  TBD
@@ -24,14 +24,14 @@ For SCROLLS, we use the ForeverDreaming (FD) subset, as it incorporates 88 diffe
24
  making it a more diverse alternative to the TV MegaSite (TMS) subset, which has only 10 shows.
25
  Community-authored recaps for the ForeverDreaming transcripts were collected from English Wikipedia and TVMaze."""
26
 
27
-
28
  _GOV_REPORT_DESCRIPTION = """
29
  GovReport (Huang et al., 2021) is a summarization dataset of reports addressing various national policy issues published by the
30
  Congressional Research Service and the U.S. Government Accountability Office, where each document is paired with a hand-written executive summary.
31
  The reports and their summaries are longer than their equivalents in other popular long-document summarization datasets;
32
  for example, GovReport's documents are approximately 1.5 and 2.5 times longer than the documents in Arxiv and PubMed, respectively."""
33
 
34
-
 
35
 
36
  _SUMM_SCREEN_CITATION = r"""
37
  @misc{chen2021summscreen,
@@ -62,11 +62,16 @@ _GOV_REPORT_CITATION = r"""
62
  abstract = "The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with Hepos, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GovReport, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.",
63
  }"""
64
 
 
 
 
 
 
65
 
66
  class FSConfig(datasets.BuilderConfig):
67
  """BuilderConfig for FS."""
68
 
69
- def __init__(self, features, data_url, citation, url, max_source_length, tokenizer,prompt, **kwargs):
70
  """BuilderConfig for FS.
71
  Args:
72
  features: `list[string]`, list of the features that will appear in the
@@ -86,27 +91,80 @@ class FSConfig(datasets.BuilderConfig):
86
  self.url = url
87
  self.max_source_length = max_source_length
88
  self.tokenizer = tokenizer
89
- self.prompt = prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
 
92
  class Fs(datasets.GeneratorBasedBuilder):
93
  """The SCROLLS benchmark."""
94
 
95
- features = ["id", "pid", "input", "output"]
96
  DEFAULT_WRITER_BATCH_SIZE = 1000 # because Narrative QA is a rather large dataset
97
  BUILDER_CONFIGS = [
98
- FSConfig(
99
- name="summ_screen_fd",
100
  description=_SUMM_SCREEN_DESCRIPTION,
101
  features=features,
102
- data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/summ_screen_fd.zip",
103
  citation=_SUMM_SCREEN_CITATION,
104
  url="https://github.com/mingdachen/SummScreen",
105
  max_source_length=None,
106
  tokenizer=None,
107
- prompt=None
108
  ),
109
- FSConfig(
110
  name="gov_report",
111
  description=_GOV_REPORT_CITATION,
112
  features=features,
@@ -115,7 +173,16 @@ class Fs(datasets.GeneratorBasedBuilder):
115
  url="https://gov-report-data.github.io/",
116
  max_source_length=None,
117
  tokenizer=None,
118
- prompt=None
 
 
 
 
 
 
 
 
 
119
  ),
120
  ]
121
 
@@ -141,30 +208,28 @@ class Fs(datasets.GeneratorBasedBuilder):
141
  datasets.SplitGenerator(
142
  name=datasets.Split.TRAIN,
143
  gen_kwargs={
144
- "data_file": os.path.join(dl_dir, "train.jsonl"),
145
  "split": datasets.Split.TRAIN,
146
  "max_source_length": self.config.max_source_length,
147
- "prompt": self.config.prompt,
148
  "tokenizer": self.config.tokenizer,
149
  },
150
  ),
151
  datasets.SplitGenerator(
152
  name=datasets.Split.VALIDATION,
153
  gen_kwargs={
154
- "data_file": os.path.join(dl_dir, "validation.jsonl"),
155
  "split": datasets.Split.VALIDATION,
156
  "max_source_length": self.config.max_source_length,
157
- "prompt": self.config.prompt,
158
  "tokenizer": self.config.tokenizer,
159
  },
160
  ),
161
  datasets.SplitGenerator(
162
  name=datasets.Split.TEST,
163
  gen_kwargs={
164
- "data_file": os.path.join(dl_dir, "test.jsonl") if data_files is None else data_files["test"],
 
165
  "split": datasets.Split.TEST,
166
  "max_source_length": self.config.max_source_length,
167
- "prompt": self.config.prompt,
168
  "tokenizer": self.config.tokenizer,
169
  },
170
  ),
@@ -174,7 +239,8 @@ class Fs(datasets.GeneratorBasedBuilder):
174
  with open(data_file, encoding="utf-8") as f:
175
  for line in f:
176
  row = json.loads(line)
177
- prefix = row["source"].strip()
 
178
  suffix = "\n" + self.config.prompt
179
  encoded_input = tokenizer.encode(prefix + suffix)
180
 
@@ -188,9 +254,12 @@ class Fs(datasets.GeneratorBasedBuilder):
188
  prefix = tokenizer.decode(tokenized_prefix, skip_special_tokens=False).strip()
189
  encoded_input = tokenizer.encode(prefix + suffix)
190
 
191
- row["input"] = prefix + suffix
192
- row["output"] = row["target"]
 
 
193
 
 
194
  yield row["pid"], row
195
 
196
 
@@ -200,7 +269,11 @@ def _get_task_name_from_data_url(data_url):
200
 
201
  if __name__ == '__main__':
202
  tokenizer = AutoTokenizer.from_pretrained("t5-base")
203
- dataset = load_dataset("tau/fs",name="summ_screen_fd", max_source_length=512, tokenizer=tokenizer, prompt="Summary:")
 
 
 
 
204
  x = 5
205
  # builder = Scrolls("scrolls", "summ_screen_fd")
206
  # builder.download_and_prepare()
 
6
  import os
7
  import datasets
8
  from datasets import load_dataset
9
+ from transformers import AutoTokenizer # TODO comment out when getting rid of __main__:
10
 
11
  _FS_CITATION = """
12
  TBD
 
24
  making it a more diverse alternative to the TV MegaSite (TMS) subset, which has only 10 shows.
25
  Community-authored recaps for the ForeverDreaming transcripts were collected from English Wikipedia and TVMaze."""
26
 
 
27
  _GOV_REPORT_DESCRIPTION = """
28
  GovReport (Huang et al., 2021) is a summarization dataset of reports addressing various national policy issues published by the
29
  Congressional Research Service and the U.S. Government Accountability Office, where each document is paired with a hand-written executive summary.
30
  The reports and their summaries are longer than their equivalents in other popular long-document summarization datasets;
31
  for example, GovReport's documents are approximately 1.5 and 2.5 times longer than the documents in Arxiv and PubMed, respectively."""
32
 
33
+ _ARXIV_DESCRIPTION = """
34
+ """
35
 
36
  _SUMM_SCREEN_CITATION = r"""
37
  @misc{chen2021summscreen,
 
62
  abstract = "The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with Hepos, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GovReport, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.",
63
  }"""
64
 
65
+ _ARXIV_CITATION = r"""
66
+ }"""
67
+
68
+ SUMM_PROMPT = "Summary: "
69
+
70
 
71
  class FSConfig(datasets.BuilderConfig):
72
  """BuilderConfig for FS."""
73
 
74
+ def __init__(self, features, data_url, citation, url, max_source_length, tokenizer, **kwargs):
75
  """BuilderConfig for FS.
76
  Args:
77
  features: `list[string]`, list of the features that will appear in the
 
91
  self.url = url
92
  self.max_source_length = max_source_length
93
  self.tokenizer = tokenizer
94
+ self.prompt = None
95
+ self.input_key = None
96
+ self.output_key = None
97
+ self.redundant_fields = []
98
+
99
+ self.train_file = "train.jsonl"
100
+ self.validation_file = "validation.jsonl"
101
+ self.test_file = "test.jsonl"
102
+
103
+ def remove_redundant_fields(self, example):
104
+ for field in self.redundant_fields:
105
+ del example[field]
106
+
107
+ def process_input(self, s):
108
+ return s.strip()
109
+
110
+ def process_output(self, s):
111
+ return s
112
+
113
+
114
+ class ScrollsConfig(FSConfig):
115
+ def __init__(self, **kwargs):
116
+ super().__init__(**kwargs)
117
+ self.prompt = SUMM_PROMPT
118
+
119
+ self.train_file = "train.jsonl"
120
+ self.validation_file = "validation.jsonl"
121
+ self.test_file = "test.jsonl"
122
+
123
+ self.input_key = "input"
124
+ self.output_key = "output"
125
+ self.id_key = "pid"
126
+ self.redundant_fields = [self.input_key, self.output_key, "id"]
127
+
128
+
129
+ class ArxivConfig(FSConfig):
130
+ def __init__(self, **kwargs):
131
+ super().__init__(**kwargs)
132
+ self.prompt = SUMM_PROMPT
133
+
134
+ self.train_file = "train.txt"
135
+ self.validation_file = "val.txt"
136
+ self.test_file = "test.txt"
137
+
138
+ self.input_key = "article_text"
139
+ self.output_key = "abstract_text"
140
+ self.id_key = "article_id"
141
+ self.redundant_fields = [self.input_key, self.output_key, self.id_key, 'labels', 'section_names', 'sections']
142
+
143
+ def process_input(self, s):
144
+ return ' '.join(s)
145
+
146
+ def process_output(self, s):
147
+ # TODO remove "<S>" and "</S>" ?
148
+ return self.process_input(s)
149
 
150
 
151
  class Fs(datasets.GeneratorBasedBuilder):
152
  """The SCROLLS benchmark."""
153
 
154
+ features = ["pid", "source", "target"]
155
  DEFAULT_WRITER_BATCH_SIZE = 1000 # because Narrative QA is a rather large dataset
156
  BUILDER_CONFIGS = [
157
+ ScrollsConfig(
158
+ name="summ_screen_fd_debug",
159
  description=_SUMM_SCREEN_DESCRIPTION,
160
  features=features,
161
+ data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/summ_screen_fd_debug.zip",
162
  citation=_SUMM_SCREEN_CITATION,
163
  url="https://github.com/mingdachen/SummScreen",
164
  max_source_length=None,
165
  tokenizer=None,
 
166
  ),
167
+ ScrollsConfig(
168
  name="gov_report",
169
  description=_GOV_REPORT_CITATION,
170
  features=features,
 
173
  url="https://gov-report-data.github.io/",
174
  max_source_length=None,
175
  tokenizer=None,
176
+ ),
177
+ ArxivConfig(
178
+ name="arxiv_debug",
179
+ description=_ARXIV_CITATION,
180
+ features=features,
181
+ data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/arxiv_debug.zip",
182
+ citation=_ARXIV_DESCRIPTION,
183
+ url="https://github.com/armancohan/long-summarization",
184
+ max_source_length=None,
185
+ tokenizer=None,
186
  ),
187
  ]
188
 
 
208
  datasets.SplitGenerator(
209
  name=datasets.Split.TRAIN,
210
  gen_kwargs={
211
+ "data_file": os.path.join(dl_dir, self.config.train_file),
212
  "split": datasets.Split.TRAIN,
213
  "max_source_length": self.config.max_source_length,
 
214
  "tokenizer": self.config.tokenizer,
215
  },
216
  ),
217
  datasets.SplitGenerator(
218
  name=datasets.Split.VALIDATION,
219
  gen_kwargs={
220
+ "data_file": os.path.join(dl_dir, self.config.validation_file),
221
  "split": datasets.Split.VALIDATION,
222
  "max_source_length": self.config.max_source_length,
 
223
  "tokenizer": self.config.tokenizer,
224
  },
225
  ),
226
  datasets.SplitGenerator(
227
  name=datasets.Split.TEST,
228
  gen_kwargs={
229
+ "data_file": os.path.join(dl_dir, self.config.test_file) if data_files is None else data_files[
230
+ "test"],
231
  "split": datasets.Split.TEST,
232
  "max_source_length": self.config.max_source_length,
 
233
  "tokenizer": self.config.tokenizer,
234
  },
235
  ),
 
239
  with open(data_file, encoding="utf-8") as f:
240
  for line in f:
241
  row = json.loads(line)
242
+
243
+ prefix = self.config.process_input(row[self.config.input_key])
244
  suffix = "\n" + self.config.prompt
245
  encoded_input = tokenizer.encode(prefix + suffix)
246
 
 
254
  prefix = tokenizer.decode(tokenized_prefix, skip_special_tokens=False).strip()
255
  encoded_input = tokenizer.encode(prefix + suffix)
256
 
257
+ row["pid"] = row[self.config.id_key]
258
+ row["source"] = prefix + suffix
259
+ target = row[self.config.output_key]
260
+ row["target"] = self.config.process_output(target)
261
 
262
+ self.config.remove_redundant_fields(row)
263
  yield row["pid"], row
264
 
265
 
 
269
 
270
  if __name__ == '__main__':
271
  tokenizer = AutoTokenizer.from_pretrained("t5-base")
272
+ # dataset = load_dataset("tau/fs",name="summ_screen_fd", max_source_length=512, tokenizer=tokenizer, prompt="Summary:")
273
+ ssfd_debug = load_dataset("/Users/uri/Projects/fs/fs.py", name="summ_screen_fd_debug", max_source_length=512,
274
+ tokenizer=tokenizer)
275
+ arxiv_debug = load_dataset("/Users/uri/Projects/fs/fs.py", name="arxiv_debug", max_source_length=512,
276
+ tokenizer=tokenizer, prompt="Summarize the above:")
277
  x = 5
278
  # builder = Scrolls("scrolls", "summ_screen_fd")
279
  # builder.download_and_prepare()