Update metrics/scrolls.py
Browse files- metrics/scrolls.py +55 -14
metrics/scrolls.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
"""
|
2 |
|
3 |
from collections import defaultdict
|
4 |
from copy import deepcopy
|
@@ -15,10 +15,9 @@ _CITATION = """\
|
|
15 |
"""
|
16 |
|
17 |
_DESCRIPTION = """\
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
The Scrolls benchmark aims to measure the ability of models to semantically understand long texts.
|
22 |
"""
|
23 |
|
24 |
_KWARGS_DESCRIPTION = """
|
@@ -53,14 +52,46 @@ Examples:
|
|
53 |
"""
|
54 |
|
55 |
DATASET_TO_METRICS = {
|
56 |
-
"contract_nli": {
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
"
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
}
|
65 |
|
66 |
|
@@ -153,7 +184,17 @@ class Scrolls(datasets.Metric):
|
|
153 |
metrics = {key: round(value, 4) for key, value in metrics.items()}
|
154 |
|
155 |
if self.config_name in DATASET_TO_METRICS:
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
return metrics
|
159 |
|
|
|
1 |
+
""" SCROLLS benchmark metric. """
|
2 |
|
3 |
from collections import defaultdict
|
4 |
from copy import deepcopy
|
|
|
15 |
"""
|
16 |
|
17 |
_DESCRIPTION = """\
|
18 |
+
SCROLLS: Standardized CompaRison Over Long Language Sequences.
|
19 |
+
A suite of natural language datasets that require reasoning over long texts.
|
20 |
+
https://scrolls-benchmark.com/
|
|
|
21 |
"""
|
22 |
|
23 |
_KWARGS_DESCRIPTION = """
|
|
|
52 |
"""
|
53 |
|
54 |
DATASET_TO_METRICS = {
|
55 |
+
"contract_nli": {
|
56 |
+
"metrics_to_compute": ["exact_match"],
|
57 |
+
"scrolls_score_key": "exact_match",
|
58 |
+
"display_keys": ["exact_match"],
|
59 |
+
},
|
60 |
+
"gov_report": {
|
61 |
+
"metrics_to_compute": ["rouge"],
|
62 |
+
"scrolls_score_key": "rouge/geometric_mean",
|
63 |
+
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
|
64 |
+
},
|
65 |
+
"narrative_qa": {
|
66 |
+
"metrics_to_compute": ["f1"],
|
67 |
+
"scrolls_score_key": "f1",
|
68 |
+
"display_keys": ["f1"],
|
69 |
+
},
|
70 |
+
"qasper": {
|
71 |
+
"metrics_to_compute": ["f1"],
|
72 |
+
"scrolls_score_key": "f1",
|
73 |
+
"display_keys": ["f1"],
|
74 |
+
},
|
75 |
+
"qmsum": {
|
76 |
+
"metrics_to_compute": ["rouge"],
|
77 |
+
"scrolls_score_key": "rouge/geometric_mean",
|
78 |
+
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
|
79 |
+
},
|
80 |
+
"summ_screen_fd": {
|
81 |
+
"metrics_to_compute": ["rouge"],
|
82 |
+
"scrolls_score_key": "rouge/geometric_mean",
|
83 |
+
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
|
84 |
+
},
|
85 |
+
"quality": {
|
86 |
+
"metrics_to_compute": ["exact_match"],
|
87 |
+
"scrolls_score_key": "exact_match",
|
88 |
+
"display_keys": ["exact_match"],
|
89 |
+
},
|
90 |
+
"quality_hard": {
|
91 |
+
"metrics_to_compute": ["exact_match"],
|
92 |
+
"scrolls_score_key": None,
|
93 |
+
"display_keys": ["exact_match"],
|
94 |
+
},
|
95 |
}
|
96 |
|
97 |
|
|
|
184 |
metrics = {key: round(value, 4) for key, value in metrics.items()}
|
185 |
|
186 |
if self.config_name in DATASET_TO_METRICS:
|
187 |
+
scrolls_score_key = DATASET_TO_METRICS[self.config_name]["scrolls_score_key"]
|
188 |
+
if scrolls_score_key is not None:
|
189 |
+
metrics["scrolls_score"] = metrics[scrolls_score_key]
|
190 |
+
else:
|
191 |
+
metrics["scrolls_score"] = None
|
192 |
+
|
193 |
+
display_keys = DATASET_TO_METRICS[self.config_name]["display_keys"]
|
194 |
+
metrics["display_keys"] = display_keys
|
195 |
+
metrics["display"] = []
|
196 |
+
for display_key in display_keys:
|
197 |
+
metrics["display"].append(metrics[display_key])
|
198 |
|
199 |
return metrics
|
200 |
|