|
import torch |
|
import torch.nn.functional as F |
|
|
|
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel |
|
|
|
from .base_encoder import BaseVisionTower, ProcessorWrapper |
|
|
|
|
|
class SiglipVisionTower(BaseVisionTower): |
|
def __init__(self, vision_tower_name, args, delay_load=False): |
|
super(SiglipVisionTower, self).__init__(vision_tower_name, args, delay_load) |
|
|
|
model_path = "google/siglip-so400m-patch14-384" |
|
base_model_name, res, interp = model_path, 384, 576 |
|
self.vision_tower_name = base_model_name |
|
self._image_size = res if res is not None else 512 |
|
self._interp_size = interp |
|
if not self.delay_load: |
|
self.load_model() |
|
elif self.unfreeze_mm_vision_tower: |
|
self.load_model() |
|
else: |
|
self._hidden_size = 1152 |
|
|
|
def load_model(self, device_map=None): |
|
self.vision_model = "siglip" |
|
|
|
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) |
|
|
|
|
|
self.vision_tower.output_tokens = True |
|
|
|
self._hidden_size = self.vision_tower.config.hidden_size |
|
self._image_size = self.vision_tower.config.image_size |
|
self._patch_size = self.vision_tower.config.patch_size |
|
self.image_processor = SiglipImageProcessor.from_pretrained( |
|
self.vision_tower_name |
|
) |
|
|
|
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower) |
|
self.is_loaded = True |
|
|
|
def interpolate(self, image_features): |
|
if self._interp_size is None: |
|
return image_features |
|
|
|
b, num_tokens, dim = image_features.shape |
|
|
|
if num_tokens != self.num_patches: |
|
target_h = target_w = int(self._interp_size**0.5) |
|
h = w = int(num_tokens**0.5) |
|
|
|
image_features = image_features.view(b, h, w, dim) |
|
image_features = image_features.permute(0, 3, 1, 2).contiguous() |
|
|
|
image_features = F.interpolate( |
|
image_features.to(torch.float32), |
|
size=(target_h, target_w), |
|
mode="bilinear", |
|
align_corners=False, |
|
).to(image_features.dtype) |
|
|
|
|
|
image_features = image_features.permute(0, 2, 3, 1).contiguous() |
|
|
|
|
|
image_features = image_features.flatten(1, 2) |
|
|
|
return image_features |
|
|
|
def _forward(self, images, interpolate_token=576): |
|
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower): |
|
image_features = self.vision_tower.forward( |
|
images.to(device=self.device, dtype=self.dtype), |
|
output_hidden_states=True, |
|
).hidden_states[-1] |
|
interp_features = self.interpolate(image_features) |
|
return interp_features |
|
|