# In case this module is invoked from other modules, e.g., preprocessing from pathlib import Path import sys sys.path.append(str(Path.cwd() / "annotation")) import json import os import argparse from sklearn.model_selection import train_test_split from datatypes import VideoAnnotation, Metadata from annotate import dump_json from utils import get_metadata, filter_video from typing import List if __name__ == "__main__": parser = argparse.ArgumentParser( prog = 'train_test.py', description='Annotate video dataset with JSON format' ) parser.add_argument( '--folders', type = str, nargs = '+', required = True, help = "List of folder paths to video data" ) parser.add_argument( '--train_size', type=float, default=0.8, help='Proportion of the dataset for training' ) parser.add_argument( '--output_train_file', type=str, default='data/EnTube_train.json', help='Output JSON file for training' ) parser.add_argument( '--output_test_file', type=str, default='data/EnTube_test.json', help='Output JSON file for testing' ) parser.add_argument( '--max_duration', type=int, help='Maximum duration of video in seconds' ) parser.add_argument( '--random_state', type=int, default=42, help='Random seed for train-test split' ) args = parser.parse_args() folder_paths: List[str] = args.folders metadata: Metadata = get_metadata(folder_paths) # split metadata into 3 submetadata corresponding to 3 labels metadata_label = {0: [], 1: [], 2: []} for video, label in metadata: metadata_label[int(label)].append((video, label)) train = [] test = [] for label, videos in metadata_label.items(): train_l, test_l = train_test_split( videos, train_size=args.train_size, random_state=args.random_state ) print(f'Label {label}: {len(train_l)} training videos, {len(test_l)} testing videos') train.extend(train_l) test.extend(test_l) json_train: List[VideoAnnotation] = dump_json(train, filter_video, **vars(args)) json_test: List[VideoAnnotation] = dump_json(test, filter_video, **vars(args)) with open(args.output_train_file, 'w') as f: json.dump(json_train, f, indent=4) print(f"Training data saved to {args.output_train_file}") with open(args.output_test_file, 'w') as f: json.dump(json_test, f, indent=4) print(f"Testing data saved to {args.output_test_file}")