Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K - 100K
License:
import xml.etree.ElementTree as ET | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{DBLP:conf/aaai/RogersKDR20, | |
author = {Anna Rogers and | |
Olga Kovaleva and | |
Matthew Downey and | |
Anna Rumshisky}, | |
title = {Getting Closer to {AI} Complete Question Answering: {A} Set of Prerequisite | |
Real Tasks}, | |
booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI} | |
2020, The Thirty-Second Innovative Applications of Artificial Intelligence | |
Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational | |
Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA, | |
February 7-12, 2020}, | |
pages = {8722--8731}, | |
publisher = {{AAAI} Press}, | |
year = {2020}, | |
url = {https://aaai.org/ojs/index.php/AAAI/article/view/6398}, | |
timestamp = {Thu, 04 Jun 2020 13:18:48 +0200}, | |
biburl = {https://dblp.org/rec/conf/aaai/RogersKDR20.bib}, | |
bibsource = {dblp computer science bibliography, https://dblp.org} | |
} | |
""" | |
_DESCRIPTION = """\ | |
QuAIL is a reading comprehension dataset. \ | |
QuAIL contains 15K multi-choice questions in texts 300-350 tokens \ | |
long 4 domains (news, user stories, fiction, blogs).\ | |
QuAIL is balanced and annotated for question types.\ | |
""" | |
class QuailConfig(datasets.BuilderConfig): | |
"""BuilderConfig for QuAIL.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for QuAIL. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(QuailConfig, self).__init__(**kwargs) | |
class Quail(datasets.GeneratorBasedBuilder): | |
"""QuAIL: The Stanford Question Answering Dataset. Version 1.1.""" | |
_CHALLENGE_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_challenge_randomized.xml" | |
_DEV_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_dev_randomized.xml" | |
_TRAIN_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_train_randomized.xml" | |
BUILDER_CONFIGS = [ | |
QuailConfig( | |
name="quail", | |
version=datasets.Version("1.3.0", ""), | |
description="Quail dataset 1.3.0", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"context_id": datasets.Value("string"), | |
"question_id": datasets.Value("string"), | |
"domain": datasets.Value("string"), | |
"metadata": { | |
"author": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
}, | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"question_type": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
datasets.Value("string"), | |
), | |
"correct_answer_id": datasets.Value("int32"), | |
} | |
), | |
# No default supervised_keys (as we have to pass both question | |
# and context as input). | |
supervised_keys=None, | |
homepage="https://text-machine-lab.github.io/blog/2020/quail/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
urls_to_download = {"train": self._TRAIN_SET, "dev": self._DEV_SET, "challenge": self._CHALLENGE_SET} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name="challenge", gen_kwargs={"filepath": downloaded_files["challenge"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
root = ET.parse(filepath).getroot() | |
for text_tag in root.iterfind("text"): | |
text_id = text_tag.get("id") | |
domain = text_tag.get("domain") | |
metadata_tag = text_tag.find("metadata") | |
author = metadata_tag.find("author").text.strip() | |
title = metadata_tag.find("title").text.strip() | |
url = metadata_tag.find("url").text.strip() | |
text_body = text_tag.find("text_body").text.strip() | |
questions_tag = text_tag.find("questions") | |
for q_tag in questions_tag.iterfind("q"): | |
question_type = q_tag.get("type", None) | |
question_text = q_tag.text.strip() | |
question_id = q_tag.get("id") | |
answers = [] | |
answer_id = None | |
for i, a_tag in enumerate(q_tag.iterfind("a")): | |
if a_tag.get("correct") == "True": | |
answer_id = i | |
answers.append(a_tag.text.strip()) | |
id_ = f"{text_id}_{question_id}" | |
yield id_, { | |
"id": id_, | |
"context_id": text_id, | |
"question_id": question_id, | |
"question_type": question_type, | |
"domain": domain, | |
"metadata": {"author": author, "title": title, "url": url}, | |
"context": text_body, | |
"question": question_text, | |
"answers": answers, | |
"correct_answer_id": answer_id, | |
} | |