Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
quail / quail.py
system's picture
system HF staff
Update files from the datasets library (from 1.4.0)
f9ab9d9
raw
history blame
6.05 kB
import xml.etree.ElementTree as ET
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{DBLP:conf/aaai/RogersKDR20,
author = {Anna Rogers and
Olga Kovaleva and
Matthew Downey and
Anna Rumshisky},
title = {Getting Closer to {AI} Complete Question Answering: {A} Set of Prerequisite
Real Tasks},
booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI}
2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational
Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA,
February 7-12, 2020},
pages = {8722--8731},
publisher = {{AAAI} Press},
year = {2020},
url = {https://aaai.org/ojs/index.php/AAAI/article/view/6398},
timestamp = {Thu, 04 Jun 2020 13:18:48 +0200},
biburl = {https://dblp.org/rec/conf/aaai/RogersKDR20.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
QuAIL is a reading comprehension dataset. \
QuAIL contains 15K multi-choice questions in texts 300-350 tokens \
long 4 domains (news, user stories, fiction, blogs).\
QuAIL is balanced and annotated for question types.\
"""
class QuailConfig(datasets.BuilderConfig):
"""BuilderConfig for QuAIL."""
def __init__(self, **kwargs):
"""BuilderConfig for QuAIL.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(QuailConfig, self).__init__(**kwargs)
class Quail(datasets.GeneratorBasedBuilder):
"""QuAIL: The Stanford Question Answering Dataset. Version 1.1."""
_CHALLENGE_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_challenge_randomized.xml"
_DEV_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_dev_randomized.xml"
_TRAIN_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_train_randomized.xml"
BUILDER_CONFIGS = [
QuailConfig(
name="quail",
version=datasets.Version("1.3.0", ""),
description="Quail dataset 1.3.0",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"context_id": datasets.Value("string"),
"question_id": datasets.Value("string"),
"domain": datasets.Value("string"),
"metadata": {
"author": datasets.Value("string"),
"title": datasets.Value("string"),
"url": datasets.Value("string"),
},
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"question_type": datasets.Value("string"),
"answers": datasets.features.Sequence(
datasets.Value("string"),
),
"correct_answer_id": datasets.Value("int32"),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://text-machine-lab.github.io/blog/2020/quail/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls_to_download = {"train": self._TRAIN_SET, "dev": self._DEV_SET, "challenge": self._CHALLENGE_SET}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name="challenge", gen_kwargs={"filepath": downloaded_files["challenge"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
root = ET.parse(filepath).getroot()
for text_tag in root.iterfind("text"):
text_id = text_tag.get("id")
domain = text_tag.get("domain")
metadata_tag = text_tag.find("metadata")
author = metadata_tag.find("author").text.strip()
title = metadata_tag.find("title").text.strip()
url = metadata_tag.find("url").text.strip()
text_body = text_tag.find("text_body").text.strip()
questions_tag = text_tag.find("questions")
for q_tag in questions_tag.iterfind("q"):
question_type = q_tag.get("type", None)
question_text = q_tag.text.strip()
question_id = q_tag.get("id")
answers = []
answer_id = None
for i, a_tag in enumerate(q_tag.iterfind("a")):
if a_tag.get("correct") == "True":
answer_id = i
answers.append(a_tag.text.strip())
id_ = f"{text_id}_{question_id}"
yield id_, {
"id": id_,
"context_id": text_id,
"question_id": question_id,
"question_type": question_type,
"domain": domain,
"metadata": {"author": author, "title": title, "url": url},
"context": text_body,
"question": question_text,
"answers": answers,
"correct_answer_id": answer_id,
}