import xml.etree.ElementTree as ET import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{DBLP:conf/aaai/RogersKDR20, author = {Anna Rogers and Olga Kovaleva and Matthew Downey and Anna Rumshisky}, title = {Getting Closer to {AI} Complete Question Answering: {A} Set of Prerequisite Real Tasks}, booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI} 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA, February 7-12, 2020}, pages = {8722--8731}, publisher = {{AAAI} Press}, year = {2020}, url = {https://aaai.org/ojs/index.php/AAAI/article/view/6398}, timestamp = {Thu, 04 Jun 2020 13:18:48 +0200}, biburl = {https://dblp.org/rec/conf/aaai/RogersKDR20.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _DESCRIPTION = """\ QuAIL is a reading comprehension dataset. \ QuAIL contains 15K multi-choice questions in texts 300-350 tokens \ long 4 domains (news, user stories, fiction, blogs).\ QuAIL is balanced and annotated for question types.\ """ class QuailConfig(datasets.BuilderConfig): """BuilderConfig for QuAIL.""" def __init__(self, **kwargs): """BuilderConfig for QuAIL. Args: **kwargs: keyword arguments forwarded to super. """ super(QuailConfig, self).__init__(**kwargs) class Quail(datasets.GeneratorBasedBuilder): """QuAIL: The Stanford Question Answering Dataset. Version 1.1.""" _CHALLENGE_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_challenge_randomized.xml" _DEV_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_dev_randomized.xml" _TRAIN_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_train_randomized.xml" BUILDER_CONFIGS = [ QuailConfig( name="quail", version=datasets.Version("1.3.0", ""), description="Quail dataset 1.3.0", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "context_id": datasets.Value("string"), "question_id": datasets.Value("string"), "domain": datasets.Value("string"), "metadata": { "author": datasets.Value("string"), "title": datasets.Value("string"), "url": datasets.Value("string"), }, "context": datasets.Value("string"), "question": datasets.Value("string"), "question_type": datasets.Value("string"), "answers": datasets.features.Sequence( datasets.Value("string"), ), "correct_answer_id": datasets.Value("int32"), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://text-machine-lab.github.io/blog/2020/quail/", citation=_CITATION, ) def _split_generators(self, dl_manager): urls_to_download = {"train": self._TRAIN_SET, "dev": self._DEV_SET, "challenge": self._CHALLENGE_SET} downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name="challenge", gen_kwargs={"filepath": downloaded_files["challenge"]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) root = ET.parse(filepath).getroot() for text_tag in root.iterfind("text"): text_id = text_tag.get("id") domain = text_tag.get("domain") metadata_tag = text_tag.find("metadata") author = metadata_tag.find("author").text.strip() title = metadata_tag.find("title").text.strip() url = metadata_tag.find("url").text.strip() text_body = text_tag.find("text_body").text.strip() questions_tag = text_tag.find("questions") for q_tag in questions_tag.iterfind("q"): question_type = q_tag.get("type", None) question_text = q_tag.text.strip() question_id = q_tag.get("id") answers = [] answer_id = None for i, a_tag in enumerate(q_tag.iterfind("a")): if a_tag.get("correct") == "True": answer_id = i answers.append(a_tag.text.strip()) id_ = f"{text_id}_{question_id}" yield id_, { "id": id_, "context_id": text_id, "question_id": question_id, "question_type": question_type, "domain": domain, "metadata": {"author": author, "title": title, "url": url}, "context": text_body, "question": question_text, "answers": answers, "correct_answer_id": answer_id, }