Mimic4Dataset / Mimic4Dataset.py
thbndi's picture
Update Mimic4Dataset.py
addbee1
raw
history blame
21.6 kB
import os
import pandas as pd
import datasets
import sys
import pickle
import subprocess
import shutil
from urllib.request import urlretrieve
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import yaml
from .dataset_utils import create_vocab,gender_vocab,vocab
from .task_cohort import task_cohort
_DESCRIPTION = """\
Dataset for mimic4 data, by default for the Mortality task.
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype.
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main'
mimic path should have this form : "path/to/mimic4data/from/username/mimiciv/2.2"
If you choose a Custom task provide a configuration file for the Time series.
Currently working with Mimic-IV version 1 and 2
"""
_BASE_URL = "https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main"
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
_GIT_URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"
_CONFIG_URLS = {'los' : f"{_BASE_URL}/config/los.config",
'mortality' : f"{_BASE_URL}/config/mortality.config",
'phenotype' : f"{_BASE_URL}/config/phenotype.config",
'readmission' : f"{_BASE_URL}/config/readmission.config"
}
class Mimic4DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for Mimic4Dataset."""
def __init__(
self,
**kwargs,
):
super().__init__(**kwargs)
class Mimic4Dataset(datasets.GeneratorBasedBuilder):
"""Create Mimic4Dataset dataset from Mimic-IV data stored in user machine."""
VERSION = datasets.Version("1.0.0")
def __init__(self, **kwargs):
self.mimic_path = kwargs.pop("mimic_path", None)
self.encoding = kwargs.pop("encoding",'concat')
self.config_path = kwargs.pop("config_path",None)
self.test_size = kwargs.pop("test_size",0.2)
self.val_size = kwargs.pop("val_size",0.1)
self.generate_cohort = kwargs.pop("generate_cohort",True)
if self.encoding == 'concat':
self.concat = True
else:
self.concat = False
super().__init__(**kwargs)
BUILDER_CONFIGS = [
Mimic4DatasetConfig(
name="Phenotype",
version=VERSION,
description="Dataset for mimic4 Phenotype task"
),
Mimic4DatasetConfig(
name="Readmission",
version=VERSION,
description="Dataset for mimic4 Readmission task"
),
Mimic4DatasetConfig(
name="Length of Stay",
version=VERSION,
description="Dataset for mimic4 Length of Stay task"
),
Mimic4DatasetConfig(
name="Mortality",
version=VERSION,
description="Dataset for mimic4 Mortality task"
),
]
DEFAULT_CONFIG_NAME = "Mortality"
def create_cohort(self):
if self.config_path==None:
if self.config.name == 'Phenotype' : self.config_path = _CONFIG_URLS['phenotype']
if self.config.name == 'Readmission' : self.config_path = _CONFIG_URLS['readmission']
if self.config.name == 'Length of Stay' : self.config_path = _CONFIG_URLS['los']
if self.config.name == 'Mortality' : self.config_path = _CONFIG_URLS['mortality']
version = self.mimic_path.split('/')[-1]
mimic_folder= self.mimic_path.split('/')[-2]
mimic_complete_path='/'+mimic_folder+'/'+version
current_directory = os.getcwd()
if os.path.exists(os.path.dirname(current_directory)+'/MIMIC-IV-Data-Pipeline-main'):
dir =os.path.dirname(current_directory)
os.chdir(dir)
else:
#move to parent directory of mimic data
dir = self.mimic_path.replace(mimic_complete_path,'')
if dir[-1]!='/':
dir=dir+'/'
elif dir=='':
dir="./"
parent_dir = os.path.dirname(self.mimic_path)
os.chdir(parent_dir)
#####################clone git repo if doesnt exists
repo_url='https://github.com/healthylaife/MIMIC-IV-Data-Pipeline'
if os.path.exists('MIMIC-IV-Data-Pipeline-main'):
path_bench = './MIMIC-IV-Data-Pipeline-main'
else:
path_bench ='./MIMIC-IV-Data-Pipeline-main'
subprocess.run(["git", "clone", repo_url, path_bench])
os.makedirs(path_bench+'/mimic-iv')
shutil.move(version,path_bench+'/mimic-iv')
os.chdir(path_bench)
self.mimic_path = './mimic-iv/'+version
####################Get configurations param
#download config file if not custom
if self.config_path[0:4] == 'http':
c = self.config_path.split('/')[-1]
file_path, head = urlretrieve(self.config_path,c)
else :
file_path = self.config_path
if not os.path.exists('./config'):
os.makedirs('config')
#save config file in config folder
self.conf='./config/'+file_path.split('/')[-1]
if not os.path.exists(self.conf):
shutil.move(file_path,'./config')
with open(self.conf) as f:
config = yaml.safe_load(f)
timeW = config['timeWindow']
self.timeW=int(timeW.split()[1])
self.bucket = config['timebucket']
self.data_icu = config['icu_no_icu']=='ICU'
if self.data_icu:
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out, self.lab = config['diagnosis'], config['chart'], config['proc'], config['meds'], config['output'], False
self.feat_lab = False
else:
self.feat_cond, self.feat_lab, self.feat_proc, self.feat_meds, self.feat_chart, self.out = config['diagnosis'], config['lab'], config['proc'], config['meds'], False, False
self.feat_out = False
self.feat_chart = False
data_dir = "./data/dict/"+self.config.name.replace(" ","_")+"/dataDic"
sys.path.append(path_bench)
config = self.config_path.split('/')[-1]
#####################create task cohort
if self.generate_cohort:
task_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
#####################Split data into train, test and val
with open(data_dir, 'rb') as fp:
dataDic = pickle.load(fp)
data = pd.DataFrame.from_dict(dataDic)
dict_dir = "./data/dict/"+self.config.name.replace(" ","_")
data=data.T
train_data, test_data = train_test_split(data, test_size=self.test_size, random_state=42)
if self.val_size > 0 :
train_data, val_data = train_test_split(train_data, test_size=self.val_size, random_state=42)
val_dic = val_data.to_dict('index')
val_path = dict_dir+'/val_data.pkl'
with open(val_path, 'wb') as f:
pickle.dump(val_dic, f)
train_dic = train_data.to_dict('index')
test_dic = test_data.to_dict('index')
train_path = dict_dir+'/train_data.pkl'
test_path = dict_dir+'/test_data.pkl'
with open(train_path, 'wb') as f:
pickle.dump(train_dic, f)
with open(test_path, 'wb') as f:
pickle.dump(test_dic, f)
return dict_dir
###########################################################RAW##################################################################
def _info_raw(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"gender": datasets.Value("string"),
"ethnicity": datasets.Value("string"),
"insurance": datasets.Value("string"),
"age": datasets.Value("int32"),
"COND": datasets.Sequence(datasets.Value("string")),
"MEDS": {
"signal":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
,
"rate":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
,
"amount":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
},
"PROC": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"CHART/LAB":
{
"signal" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"val" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
},
"OUT": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_raw(self, filepath):
with open(filepath, 'rb') as fp:
dataDic = pickle.load(fp)
for hid, data in dataDic.items():
proc_features = data['Proc']
meds_features = data['Med']
out_features = data['Out']
cond_features = data['Cond']['fids']
eth= data['ethnicity']
age = data['age']
gender = data['gender']
label = data['label']
insurance=data['insurance']
items = list(proc_features.keys())
values =[proc_features[i] for i in items ]
procs = {"id" : items,
"value": values}
items_outs = list(out_features.keys())
values_outs =[out_features[i] for i in items_outs ]
outs = {"id" : items_outs,
"value": values_outs}
if self.data_icu:
chart_features = data['Chart']
else:
chart_features = data['Lab']
#chart signal
if ('signal' in chart_features):
items_chart_sig = list(chart_features['signal'].keys())
values_chart_sig =[chart_features['signal'][i] for i in items_chart_sig ]
chart_sig = {"id" : items_chart_sig,
"value": values_chart_sig}
else:
chart_sig = {"id" : [],
"value": []}
#chart val
if ('val' in chart_features):
items_chart_val = list(chart_features['val'].keys())
values_chart_val =[chart_features['val'][i] for i in items_chart_val ]
chart_val = {"id" : items_chart_val,
"value": values_chart_val}
else:
chart_val = {"id" : [],
"value": []}
charts = {"signal" : chart_sig,
"val" : chart_val}
#meds signal
if ('signal' in meds_features):
items_meds_sig = list(meds_features['signal'].keys())
values_meds_sig =[meds_features['signal'][i] for i in items_meds_sig ]
meds_sig = {"id" : items_meds_sig,
"value": values_meds_sig}
else:
meds_sig = {"id" : [],
"value": []}
#meds rate
if ('rate' in meds_features):
items_meds_rate = list(meds_features['rate'].keys())
values_meds_rate =[meds_features['rate'][i] for i in items_meds_rate ]
meds_rate = {"id" : items_meds_rate,
"value": values_meds_rate}
else:
meds_rate = {"id" : [],
"value": []}
#meds amount
if ('amount' in meds_features):
items_meds_amount = list(meds_features['amount'].keys())
values_meds_amount =[meds_features['amount'][i] for i in items_meds_amount ]
meds_amount = {"id" : items_meds_amount,
"value": values_meds_amount}
else:
meds_amount = {"id" : [],
"value": []}
meds = {"signal" : meds_sig,
"rate" : meds_rate,
"amount" : meds_amount}
yield int(hid), {
"label" : label,
"gender" : gender,
"ethnicity" : eth,
"insurance" : insurance,
"age" : age,
"COND" : cond_features,
"PROC" : procs,
"CHART/LAB" : charts,
"OUT" : outs,
"MEDS" : meds
}
###########################################################ENCODED##################################################################
def _info_encoded(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"features" : datasets.Sequence(datasets.Value("float32")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_encoded(self, filepath):
path= './data/dict/'+self.config.name.replace(" ","_")+'/ethVocab'
with open(path, 'rb') as fp:
ethVocab = pickle.load(fp)
path= './data/dict/'+self.config.name.replace(" ","_")+'/insVocab'
with open(path, 'rb') as fp:
insVocab = pickle.load(fp)
genVocab = ['<PAD>', 'M', 'F']
gen_encoder = LabelEncoder()
eth_encoder = LabelEncoder()
ins_encoder = LabelEncoder()
gen_encoder.fit(genVocab)
eth_encoder.fit(ethVocab)
ins_encoder.fit(insVocab)
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
df = pd.DataFrame.from_dict(dico, orient='index')
task=self.config.name.replace(" ","_")
for i, data in df.iterrows():
concat_cols=[]
dyn_df,cond_df,demo=concat_data(data,task,self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
dyn=dyn_df.copy()
dyn.columns=dyn.columns.droplevel(0)
cols=dyn.columns
time=dyn.shape[0]
for t in range(time):
cols_t = [str(x) + "_"+str(t) for x in cols]
concat_cols.extend(cols_t)
demo['gender']=gen_encoder.transform(demo['gender'])
demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
demo['insurance']=ins_encoder.transform(demo['insurance'])
label = data['label']
demo=demo.drop(['label'],axis=1)
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
X=X.values.tolist()[0]
yield int(i), {
"label": label,
"features": X,
}
######################################################DEEP###############################################################
def _info_deep(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"DEMO": datasets.Sequence(datasets.Value("int64")),
"COND" : datasets.Sequence(datasets.Value("int64")),
"MEDS" : datasets.Array2D(shape=(None, self.size_meds), dtype='int64') ,
"PROC" : datasets.Array2D(shape=(None, self.size_proc), dtype='int64') ,
"CHART/LAB" : datasets.Array2D(shape=(None, self.size_chart), dtype='int64') ,
"OUT" : datasets.Array2D(shape=(None, self.size_out), dtype='int64') ,
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_deep(self, filepath):
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
task=self.config.name.replace(" ","_")
for key, data in dico.items():
stat, demo, meds, chart, out, proc, lab, y = generate_deep(data, task, self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
verri=True
if self.feat_proc:
if (len(proc)<(self.timeW//self.bucket)):
verri=False
if self.feat_out:
if (len(out)<(self.timeW//self.bucket)):
verri=False
if self.feat_chart:
if (len(chart)<(self.timeW//self.bucket)):
verri=False
if self.feat_meds:
if (len(meds)<(self.timeW//self.bucket)):
verri=False
if self.feat_lab:
if (len(lab)<(self.timeW//self.bucket)):
verri=False
if verri:
if self.data_icu:
yield int(key), {
'label': y,
'DEMO': demo,
'COND': stat,
'MEDS': meds,
'PROC': proc,
'CHART/LAB': chart,
'OUT': out,
}
else:
yield int(key), {
'label': y,
'DEMO': demo,
'COND': stat,
'MEDS': meds,
'PROC': proc,
'CHART/LAB': lab,
'OUT': out,
}
else:
continue
#############################################################################################################################
def _info(self):
self.path = self.create_cohort()
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
if self.encoding == 'concat' :
return self._info_encoded()
elif self.encoding == 'aggreg' :
return self._info_encoded()
elif self.encoding == 'tensor' :
return self._info_deep()
else:
return self._info_raw()
def _split_generators(self, dl_manager):
csv_dir = "./data/dict/"+self.config.name.replace(" ","_")
if self.val_size > 0 :
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": csv_dir+'/train_data.pkl'}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": csv_dir+'/val_data.pkl'}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": csv_dir+'/test_data.pkl'}),
]
else :
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": csv_dir+'/train_data.pkl'}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": csv_dir+'/test_data.pkl'}),
]
def _generate_examples(self, filepath):
if self.encoding == 'concat' :
yield from self._generate_examples_encoded(filepath)
elif self.encoding == 'aggreg' :
yield from self._generate_examples_encoded(filepath)
elif self.encoding == 'tensor' :
yield from self._generate_examples_deep(filepath)
else :
yield from self._generate_examples_raw(filepath)