thbndi commited on
Commit
26d2809
1 Parent(s): 898a7ce

Delete readme.md

Browse files
Files changed (1) hide show
  1. readme.md +0 -65
readme.md DELETED
@@ -1,65 +0,0 @@
1
- # Dataset Usage
2
-
3
- ## Description
4
-
5
- The `load_dataset` function is a powerful tool to efficiently load and prepare the Mimic-IV dataset for various healthcare analysis tasks. It offers a wide range of options for encoding data and generating cohorts, allowing for seamless integration into your research or application.
6
-
7
- ## Function Signature
8
-
9
- ```python
10
- load_dataset('thbndi/Mimic4Dataset', task, mimic_path=mimic_data, config_path=config_file, encoding=encod, generate_cohort=gen_cohort, val_size=size, cache_dir=cache)
11
- ```
12
-
13
- ## Arguments
14
-
15
- 1. `task` (string) :
16
- - Description: Specifies the task you want to perform with the dataset.
17
- - Default: "Mortality"
18
- - Note: Possible Values : 'Phenotype', 'Length of Stay', 'Readmission', 'Mortality'
19
-
20
- 2. `mimic_path` (string) :
21
- - Description: Complete path to the Mimic-IV raw data on user's machine.
22
- - Note: You need to provide the appropriate path where the Mimic-IV data is stored.
23
-
24
- 3. `config_path` (string) optionnal :
25
- - Description: Path to the configuration file for the cohort generation choices (more infos in '/config/readme.md').
26
- - Default: Configuration file provided in the 'config' folder.
27
-
28
- 4. `encoding` (string) optionnal :
29
- - Description: Data encoding option for the features.
30
- - Options: "concat", "aggreg", "tensor", "raw", "text"
31
- - Default: "concat"
32
- - Note: Choose one of the following options for data encoding:
33
- - "concat": Concatenates the one-hot encoded diagnoses, demographic data vector, and dynamic features at each measured time instant, resulting in a high-dimensional feature vector.
34
- - "aggreg": Concatenates the one-hot encoded diagnoses, demographic data vector, and dynamic features, where each item_id is replaced by the average of the measured time instants, resulting in a reduced-dimensional feature vector.
35
- - "tensor": Represents each feature as an 2D array. There are separate arrays for labels, demographic data ('DEMO'), diagnosis ('COND'), medications ('MEDS'), procedures ('PROC'), chart/lab events ('CHART/LAB'), and output events data ('OUT'). Dynamic features are represented as 2D arrays where each row contains values at a specific time instant.
36
- - "raw": Provide cohort from the pipeline without any encoding for custom data processing.
37
- - "text": Represents diagnoses as text suitable for BERT or other similar text-based models.
38
-
39
- 5. `generate_cohort` (bool) optionnal :
40
- - Description: Determines whether to generate a new cohort from Mimic-IV data.
41
- - Default: True
42
- - Note: Set it to True to generate a cohort, or False to skip cohort generation.
43
-
44
- 6. `val_size`, 'test_size' (float) optionnal :
45
- - Description: Proportion of the dataset used for validation during training.
46
- - Default: 0.1 for validation size and 0.2 for testing size.
47
- - Note: Can be set to 0.
48
-
49
- 7. `cache_dir` (string) optionnal :
50
- - Description: Directory where the processed dataset will be cached.
51
- - Note: Providing a cache directory for each encoding type can avoid errors when changing the encoding type.
52
-
53
- ## Example Usage
54
-
55
- ```python
56
- from your_module import load_dataset
57
-
58
- # Example 1: Load dataset with default settings
59
- dataset = load_dataset('thbndi/Mimic4Dataset', task="Mortality")
60
-
61
- # Example 2: Load dataset with custom settings
62
- dataset = load_dataset('thbndi/Mimic4Dataset', task="Phenotype", mimic_path="/path/to/mimic_data", config_path="/path/to/config_file", encoding="aggreg", generate_cohort=False, val_size=0.2, cache_dir="/path/to/cache_dir")
63
- ```
64
-
65
- Please note that the provided examples are for illustrative purposes only, and you should adjust the paths and settings based on your actual dataset and specific use case.