thbndi commited on
Commit
2aa4fdc
·
1 Parent(s): c03da6e

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +37 -12
Mimic4Dataset.py CHANGED
@@ -767,8 +767,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
767
  ###########################################################ENCODED##################################################################
768
 
769
  def _info_encoded(self,X_encoded):
770
- columns = {col: self.map_dtype(X_encoded[col].dtype) for col in X_encoded.columns}
771
- features = datasets.Features(columns)
772
  return datasets.DatasetInfo(
773
  description=_DESCRIPTION,
774
  features=features,
@@ -790,7 +790,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
790
  for i, row in df.iterrows():
791
  yield i, row.to_dict()
792
  #############################################################################################################################
793
- def _info_deep(self,X_deep):
 
794
  columns = {col: self.map_dtype(X_deep[col].dtype) for col in X_deep.columns}
795
  features = datasets.Features(columns)
796
  return datasets.DatasetInfo(
@@ -804,15 +805,34 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
804
  data_dir = "./data/dict/"+self.config.name.replace(" ","_")
805
 
806
  return [
807
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/X_train_deep.csv'}),
808
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir+'/X_val_deep.csv'}),
809
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/X_test_deep.csv'}),
810
  ]
811
 
812
  def _generate_examples_deep(self, filepath):
813
- df = pd.read_csv(filepath, header=0)
814
- for i, row in df.iterrows():
815
- yield i, row.to_dict()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816
 
817
  #############################################################################################################################
818
  def _info(self):
@@ -827,14 +847,19 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
827
  X_test_encoded.to_csv(self.path+"/X_test_encoded.csv", index=False)
828
  X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
829
  return self._info_encoded(X_train_encoded)
 
830
  elif self.encoding == 'deep' :
831
  X_train_deep = generate_split_deep(self.path+'/train_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
832
  X_test_deep = generate_split_deep(self.path+'/test_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
833
  X_val_deep = generate_split_deep(self.path+'/val_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
834
 
835
- X_train_deep.to_csv(self.path+"/X_train_deep.csv", index=False)
836
- X_test_deep.to_csv(self.path+"/X_test_deep.csv", index=False)
837
- X_val_deep.to_csv(self.path+"/X_val_deep.csv", index=False)
 
 
 
 
838
  return self._info_deep(X_train_deep)
839
  else:
840
  return self._info_raw()
 
767
  ###########################################################ENCODED##################################################################
768
 
769
  def _info_encoded(self,X_encoded):
770
+ keys=list(set(key for item in X_encoded.values() for key in item.keys()))
771
+ features = datasets.Features({key: self.map_dtype(X_encoded[key].dtype) for key in keys})
772
  return datasets.DatasetInfo(
773
  description=_DESCRIPTION,
774
  features=features,
 
790
  for i, row in df.iterrows():
791
  yield i, row.to_dict()
792
  #############################################################################################################################
793
+ def _info_deep(self,X_deep_dict):
794
+ keys= list(X_deep_dict.keys())
795
  columns = {col: self.map_dtype(X_deep[col].dtype) for col in X_deep.columns}
796
  features = datasets.Features(columns)
797
  return datasets.DatasetInfo(
 
805
  data_dir = "./data/dict/"+self.config.name.replace(" ","_")
806
 
807
  return [
808
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/X_train_deep.pkl'}),
809
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir+'/X_val_deep.pkl'}),
810
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/X_test_deep.pkl'}),
811
  ]
812
 
813
  def _generate_examples_deep(self, filepath):
814
+ with open(filepath, 'rb') as fp:
815
+ dico = pickle.load(fp)
816
+ for key, data in dico.items():
817
+ proc_features = data['proc']
818
+ chart_features = data['chart']
819
+ meds_features = data['meds']
820
+ out_features = data['out']
821
+ cond_features = data['stat']
822
+ demo= data['demo']
823
+ label = data['y']
824
+ lab=data['lab']
825
+
826
+ yield int(key), {
827
+ 'proc': proc_features,
828
+ 'chart': chart_features,
829
+ 'meds': meds_features,
830
+ 'out': out_features,
831
+ 'stat': cond_features,
832
+ 'demo': demo,
833
+ 'lab': lab,
834
+ 'y': label
835
+ }
836
 
837
  #############################################################################################################################
838
  def _info(self):
 
847
  X_test_encoded.to_csv(self.path+"/X_test_encoded.csv", index=False)
848
  X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
849
  return self._info_encoded(X_train_encoded)
850
+
851
  elif self.encoding == 'deep' :
852
  X_train_deep = generate_split_deep(self.path+'/train_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
853
  X_test_deep = generate_split_deep(self.path+'/test_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
854
  X_val_deep = generate_split_deep(self.path+'/val_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
855
 
856
+ with open(self.path+"/X_train_deep.pkl", 'wb') as f:
857
+ pickle.dump(X_train_deep, f)
858
+ with open(self.path+"/X_test_deep.pkl", 'wb') as f:
859
+ pickle.dump(X_test_deep, f)
860
+ with open(self.path+"/X_val_deep.pkl", 'wb') as f:
861
+ pickle.dump(X_val_deep, f)
862
+
863
  return self._info_deep(X_train_deep)
864
  else:
865
  return self._info_raw()