Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +43 -37
Mimic4Dataset.py
CHANGED
@@ -9,8 +9,8 @@ from urllib.request import urlretrieve
|
|
9 |
from sklearn.model_selection import train_test_split
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
import yaml
|
12 |
-
from .dataset_utils import
|
13 |
-
from .task_cohort import create_cohort
|
14 |
|
15 |
|
16 |
|
@@ -103,7 +103,11 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
103 |
version = self.mimic_path.split('/')[-1]
|
104 |
mimic_folder= self.mimic_path.split('/')[-2]
|
105 |
mimic_complete_path='/'+mimic_folder+'/'+version
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
current_directory = os.getcwd()
|
108 |
if os.path.exists(os.path.dirname(current_directory)+'/MIMIC-IV-Data-Pipeline-main'):
|
109 |
dir =os.path.dirname(current_directory)
|
@@ -111,6 +115,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
111 |
else:
|
112 |
#move to parent directory of mimic data
|
113 |
dir = self.mimic_path.replace(mimic_complete_path,'')
|
|
|
114 |
if dir[-1]!='/':
|
115 |
dir=dir+'/'
|
116 |
elif dir=='':
|
@@ -138,9 +143,9 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
138 |
file_path, head = urlretrieve(self.config_path,c)
|
139 |
else :
|
140 |
file_path = self.config_path
|
141 |
-
|
142 |
if not os.path.exists('./config'):
|
143 |
os.makedirs('config')
|
|
|
144 |
#save config file in config folder
|
145 |
self.conf='./config/'+file_path.split('/')[-1]
|
146 |
if not os.path.exists(self.conf):
|
@@ -211,7 +216,26 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
211 |
pickle.dump(test_dic, f)
|
212 |
|
213 |
return dict_dir
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
###########################################################RAW##################################################################
|
216 |
|
217 |
def _info_raw(self):
|
@@ -407,11 +431,9 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
407 |
dico = pickle.load(fp)
|
408 |
|
409 |
df = pd.DataFrame.from_dict(dico, orient='index')
|
410 |
-
task=self.config.name.replace(" ","_")
|
411 |
-
|
412 |
for i, data in df.iterrows():
|
413 |
concat_cols=[]
|
414 |
-
dyn_df,cond_df,demo=concat_data(data,
|
415 |
dyn=dyn_df.copy()
|
416 |
dyn.columns=dyn.columns.droplevel(0)
|
417 |
cols=dyn.columns
|
@@ -426,14 +448,16 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
426 |
demo=demo.drop(['label'],axis=1)
|
427 |
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
|
428 |
X=X.values.tolist()[0]
|
|
|
429 |
size_concat = self.size_cond+ self.size_proc * ((self.timeW//self.bucket)+1) + self.size_meds* ((self.timeW//self.bucket)+1)+ self.size_out* ((self.timeW//self.bucket)+1)+ self.size_chart* ((self.timeW//self.bucket)+1)+ self.size_lab* ((self.timeW//self.bucket)+1) + 4
|
430 |
size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
|
431 |
-
|
432 |
if (len(X)==size_concat or len(X)==size_aggreg):
|
433 |
yield int(i), {
|
434 |
"label": label,
|
435 |
"features": X,
|
436 |
}
|
|
|
437 |
######################################################DEEP###############################################################
|
438 |
def _info_deep(self):
|
439 |
features = datasets.Features(
|
@@ -459,27 +483,11 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
459 |
def _generate_examples_deep(self, filepath):
|
460 |
with open(filepath, 'rb') as fp:
|
461 |
dico = pickle.load(fp)
|
462 |
-
|
463 |
for key, data in dico.items():
|
464 |
-
stat, demo, meds, chart, out, proc, lab, y = generate_deep(data,
|
465 |
-
|
466 |
-
|
467 |
-
if self.feat_proc:
|
468 |
-
if (len(proc)<(self.timeW//self.bucket)):
|
469 |
-
verri=False
|
470 |
-
if self.feat_out:
|
471 |
-
if (len(out)<(self.timeW//self.bucket)):
|
472 |
-
verri=False
|
473 |
-
if self.feat_chart:
|
474 |
-
if (len(chart)<(self.timeW//self.bucket)):
|
475 |
-
verri=False
|
476 |
-
if self.feat_meds:
|
477 |
-
if (len(meds)<(self.timeW//self.bucket)):
|
478 |
-
verri=False
|
479 |
-
if self.feat_lab:
|
480 |
-
if (len(lab)<(self.timeW//self.bucket)):
|
481 |
-
verri=False
|
482 |
-
if verri:
|
483 |
if self.data_icu:
|
484 |
yield int(key), {
|
485 |
'label': y,
|
@@ -505,7 +513,6 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
505 |
def _info(self):
|
506 |
self.path = self.init_cohort()
|
507 |
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
|
508 |
-
|
509 |
if (self.encoding == 'concat' or self.encoding =='aggreg'):
|
510 |
return self._info_encoded()
|
511 |
|
@@ -517,21 +524,20 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
517 |
|
518 |
|
519 |
def _split_generators(self, dl_manager):
|
520 |
-
|
521 |
if self.val_size > 0 :
|
522 |
return [
|
523 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath":
|
524 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath":
|
525 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath":
|
526 |
]
|
527 |
else :
|
528 |
return [
|
529 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath":
|
530 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath":
|
531 |
]
|
532 |
|
533 |
def _generate_examples(self, filepath):
|
534 |
-
|
535 |
if (self.encoding == 'concat' or self.encoding == 'aggreg'):
|
536 |
yield from self._generate_examples_encoded(filepath)
|
537 |
|
|
|
9 |
from sklearn.model_selection import train_test_split
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
import yaml
|
12 |
+
from .dataset_utils import vocab, concat_data, generate_deep, generate_ml
|
13 |
+
from .task_cohort import create_cohort
|
14 |
|
15 |
|
16 |
|
|
|
103 |
version = self.mimic_path.split('/')[-1]
|
104 |
mimic_folder= self.mimic_path.split('/')[-2]
|
105 |
mimic_complete_path='/'+mimic_folder+'/'+version
|
106 |
+
print('mimic_complete_path : ',mimic_complete_path)
|
107 |
+
print('mimic_folder : ',mimic_folder)
|
108 |
+
print('self.mimic_path : ',self.mimic_path)
|
109 |
+
print('version : ',version)
|
110 |
+
|
111 |
current_directory = os.getcwd()
|
112 |
if os.path.exists(os.path.dirname(current_directory)+'/MIMIC-IV-Data-Pipeline-main'):
|
113 |
dir =os.path.dirname(current_directory)
|
|
|
115 |
else:
|
116 |
#move to parent directory of mimic data
|
117 |
dir = self.mimic_path.replace(mimic_complete_path,'')
|
118 |
+
print('dir : ',dir)
|
119 |
if dir[-1]!='/':
|
120 |
dir=dir+'/'
|
121 |
elif dir=='':
|
|
|
143 |
file_path, head = urlretrieve(self.config_path,c)
|
144 |
else :
|
145 |
file_path = self.config_path
|
|
|
146 |
if not os.path.exists('./config'):
|
147 |
os.makedirs('config')
|
148 |
+
|
149 |
#save config file in config folder
|
150 |
self.conf='./config/'+file_path.split('/')[-1]
|
151 |
if not os.path.exists(self.conf):
|
|
|
216 |
pickle.dump(test_dic, f)
|
217 |
|
218 |
return dict_dir
|
219 |
+
|
220 |
+
def verif_dim_tensor(self, proc, out, chart, meds, lab):
|
221 |
+
verif=True
|
222 |
+
if self.feat_proc:
|
223 |
+
if (len(proc)<(self.timeW//self.bucket)):
|
224 |
+
verif=False
|
225 |
+
if self.feat_out:
|
226 |
+
if (len(out)<(self.timeW//self.bucket)):
|
227 |
+
verif=False
|
228 |
+
if self.feat_chart:
|
229 |
+
if (len(chart)<(self.timeW//self.bucket)):
|
230 |
+
verif=False
|
231 |
+
if self.feat_meds:
|
232 |
+
if (len(meds)<(self.timeW//self.bucket)):
|
233 |
+
verif=False
|
234 |
+
if self.feat_lab:
|
235 |
+
if (len(lab)<(self.timeW//self.bucket)):
|
236 |
+
verif=False
|
237 |
+
return verif
|
238 |
+
|
239 |
###########################################################RAW##################################################################
|
240 |
|
241 |
def _info_raw(self):
|
|
|
431 |
dico = pickle.load(fp)
|
432 |
|
433 |
df = pd.DataFrame.from_dict(dico, orient='index')
|
|
|
|
|
434 |
for i, data in df.iterrows():
|
435 |
concat_cols=[]
|
436 |
+
dyn_df,cond_df,demo=concat_data(data,self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
|
437 |
dyn=dyn_df.copy()
|
438 |
dyn.columns=dyn.columns.droplevel(0)
|
439 |
cols=dyn.columns
|
|
|
448 |
demo=demo.drop(['label'],axis=1)
|
449 |
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
|
450 |
X=X.values.tolist()[0]
|
451 |
+
|
452 |
size_concat = self.size_cond+ self.size_proc * ((self.timeW//self.bucket)+1) + self.size_meds* ((self.timeW//self.bucket)+1)+ self.size_out* ((self.timeW//self.bucket)+1)+ self.size_chart* ((self.timeW//self.bucket)+1)+ self.size_lab* ((self.timeW//self.bucket)+1) + 4
|
453 |
size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
|
454 |
+
|
455 |
if (len(X)==size_concat or len(X)==size_aggreg):
|
456 |
yield int(i), {
|
457 |
"label": label,
|
458 |
"features": X,
|
459 |
}
|
460 |
+
|
461 |
######################################################DEEP###############################################################
|
462 |
def _info_deep(self):
|
463 |
features = datasets.Features(
|
|
|
483 |
def _generate_examples_deep(self, filepath):
|
484 |
with open(filepath, 'rb') as fp:
|
485 |
dico = pickle.load(fp)
|
486 |
+
|
487 |
for key, data in dico.items():
|
488 |
+
stat, demo, meds, chart, out, proc, lab, y = generate_deep(data, self.config.name.replace(" ","_"), self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
|
489 |
+
|
490 |
+
if self.verif_dim_tensor(proc, out, chart, meds, lab):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
if self.data_icu:
|
492 |
yield int(key), {
|
493 |
'label': y,
|
|
|
513 |
def _info(self):
|
514 |
self.path = self.init_cohort()
|
515 |
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
|
|
|
516 |
if (self.encoding == 'concat' or self.encoding =='aggreg'):
|
517 |
return self._info_encoded()
|
518 |
|
|
|
524 |
|
525 |
|
526 |
def _split_generators(self, dl_manager):
|
527 |
+
data_dir = "./data/dict/"+self.config.name.replace(" ","_")
|
528 |
if self.val_size > 0 :
|
529 |
return [
|
530 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/train_data.pkl'}),
|
531 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir+'/val_data.pkl'}),
|
532 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/test_data.pkl'}),
|
533 |
]
|
534 |
else :
|
535 |
return [
|
536 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/train_data.pkl'}),
|
537 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/test_data.pkl'}),
|
538 |
]
|
539 |
|
540 |
def _generate_examples(self, filepath):
|
|
|
541 |
if (self.encoding == 'concat' or self.encoding == 'aggreg'):
|
542 |
yield from self._generate_examples_encoded(filepath)
|
543 |
|