thbndi commited on
Commit
4ca1b39
1 Parent(s): ae8488f

Update readme.md

Browse files
Files changed (1) hide show
  1. readme.md +59 -159
readme.md CHANGED
@@ -1,165 +1,65 @@
1
- # Configuration File Instructions
2
-
3
- Below are the instructions to create a valid configuration file.
4
-
5
- ## Configuration File Structure
6
-
7
- The configuration file should be in YAML format (.config file) and follow the structure outlined below for **ICU Data**:
8
-
9
- ```yaml
10
- disease_label: <disease_label> mandatory only if the prediction task is Phenotype
11
- timePrediction: <timePrediction>
12
- timeWindow: <timeWindow>
13
- timebucket: <timebucket>
14
- radimp: <radimp>
15
- predW: <predW>
16
- diagnosis: <diagnosis>
17
- output: <output>
18
- chart: <chart>
19
- proc: <proc>
20
- meds: <meds>
21
- disease_filter: <disease_filter>
22
- icu_no_icu: <icu_no_icu>
23
- groupingDiag: <groupingDiag>
24
- select_diag: <select_diag>
25
- select_med: <select_med>
26
- select_proc: <select_proc>
27
- select_out: <select_out>
28
- select_chart: <select_chart>
29
- outlier_removal: <outlier_removal>
30
- outlier: <outlier>
31
- left_outlier: <left_outlier>
32
- ```
33
 
34
- The configuration file should be in YAML format (.config file) and follow the structure outlined below for **Non-ICU Data**:
35
-
36
- ```yaml
37
- disease_label: <disease_label> mandatory only if the prediction task is Phenotype
38
- timePrediction: <timePrediction>
39
- timeWindow: <timeWindow>
40
- timebucket: <timebucket>
41
- radimp: <radimp>
42
- predW: <predW>
43
- diagnosis: <diagnosis>
44
- lab: <lab>
45
- proc: <proc>
46
- meds: <meds>
47
- disease_filter: <disease_filter>
48
- icu_no_icu: <icu_no_icu>
49
- groupingDiag: <groupingDiag>
50
- groupingProc: <groupingProc>
51
- groupingMed: <groupingMed>
52
- select_diag: <select_diag>
53
- select_med: <select_med>
54
- select_proc: <select_proc>
55
- select_lab: <select_lab>
56
- outlier_removal: <outlier_removal>
57
- outlier: <outlier>
58
- left_outlier: <left_outlier>
59
- ```
60
 
61
- Replace the `<variable>` placeholders with the corresponding values specific to your use case. Detailed explanations of each variable and their valid values are provided in the next section.
62
-
63
- ## Variable Definitions and Valid Values
64
-
65
- - `disease_label` (string): Specifies the disease label for Phenotype prediction task. Don't provide the line if the task is not Phenotype. Valid values: CAD, Heart Failure, CKD, COPD.
66
- - `timePrediction` (integer): Specifies the time prediction (days). Valid values depend on the task:
67
- - For Phenotype task: 30
68
- - For Mortality task: 0
69
- - For Length of Stay task: Between 1 and 10 (inclusive)
70
- - For Readmission task: Between 10 and 150 (inclusive), multiple of 10
71
- - `timeWindow` (string): Specifies the time window. Valid values:
72
- - For Phenotype or Readmission task: Last X hours (with 24 <= X >= 72)
73
- - For Mortality or Length of Stay tasks: First X hours (with 24 <= X >= 72)
74
- - `timebucket` (integer): Specifies the time bucket. Valid values: Between 1 and 6 (inclusive).
75
- - `radimp` (string): Specifies the imputation method. Valid values:
76
- - No Imputation
77
- - forward fill and mean
78
- - forward fill and median
79
- - `predW` (integer): Specifies the prediction window. Valid values depend on the task:
80
- - For Phenotype, Length of Stay, or Readmission tasks: 0
81
- - For Mortality task: Between 2 and 8 (inclusive)
82
- - `diagnosis`, `output`, `chart`, `proc`, `meds`, `lab` (boolean): Specifies whether to include each respective feature. Valid values: True or False.
83
- - `disease_filter` (string): Specifies the disease filter if focusing on a cohort with a specific chronic disease. Valid values:
84
- - Heart Failure
85
- - COPD
86
- - CKD
87
- - CAD
88
- - No Disease Filter
89
- - `icu_no_icu` (string): Specifies the dataset type. Valid values: ICU.
90
- - `groupingDiag` (string): Specifies the grouping ICD option for diagnosis. Valid values:
91
- - Convert ICD-9 to ICD-10 and group ICD-10 codes
92
- - Keep both ICD-9 and ICD-10 codes
93
- - Convert ICD-9 to ICD-10 codes
94
- - `groupingMed`: Specifies if grouping Medication codes should be done to use Non propietary names : Valid values : Yes, No
95
- - `groupingProc` : Specifies the ICD codes version to perform grouping for procedures : Valid values :
96
- - ICD-9 and ICD-10
97
- - ICD-10
98
- - `select_diag`, `select_med`, `select_proc`, `select_out`, `select_chart`,`select_lab` (boolean): Specifies whether to do features selection as describe in https://github.com/healthylaife/MIMIC-IV-Data-Pipeline benchmark. Valid values: True or False.
99
- - `outlier_removal` (string): Specifies the outlier removal method. Valid values:
100
- - No outlier detection
101
- - Impute Outlier (default:98)
102
- - Remove outliers (default:98)
103
- - `outlier` (integer): Specifies the outlier threshold. Valid values: Between 90 and 99 (inclusive).
104
- - `left_outlier` (integer): Specifies the left outlier threshold. Valid values: Between 0 and 10 (inclusive).
105
-
106
- ## Example Configuration File
107
-
108
- Here's an example of a valid configuration file for **ICU Data**:
109
-
110
- ```yaml
111
- disease_label: CAD
112
- timePrediction: 30
113
- timeWindow: Last 72 hours
114
- timebucket: 2
115
- radimp: forward fill and mean
116
- predW: 0
117
- diagnosis: True
118
- output: True
119
- chart: True
120
- proc: True
121
- meds: True
122
- disease_filter: No Disease Filter
123
- icu_no_icu: ICU
124
- groupingICD: Convert ICD-9 to ICD-10 and group ICD-10 codes
125
- select_diag: False
126
- select_med: False
127
- select_proc: False
128
- select_out: False
129
- select_chart: False
130
- outlier_removal: Impute Outlier (default:98)
131
- outlier: 98
132
- left_outlier: 0
133
- ```
134
- Here's an example of a valid configuration file for **Non-ICU Data**:
135
-
136
- ```yaml
137
- timePrediction: 0
138
- timeWindow: First 48 hours
139
- timebucket: 2
140
- radimp: forward fill and mean
141
- predW: 2
142
- diagnosis: True
143
- lab: True
144
- proc: False
145
- meds: False
146
- disease_filter: CKD
147
- icu_no_icu: ICU
148
- groupingDiag: Convert ICD-9 to ICD-10 and group ICD-10 codes
149
- select_diag: False
150
- select_med: False
151
- select_proc: False
152
- select_lab: False
153
- outlier_removal: Impute Outlier (default:98)
154
- outlier: 98
155
- left_outlier: 0
156
- groupingMed: Yes
157
- groupingProc: ICD-10
158
  ```
159
 
160
- Feel free to modify the values to fit your specific requirements.
 
 
 
 
 
 
 
 
 
 
 
 
 
161
 
162
- ## Usage
163
- Provide the full path of your configuration file while calling the loading dataset function with the parameter config_path=`<path_to_config_file>`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
- For more understanding of the configuration please refer to https://github.com/healthylaife/MIMIC-IV-Data-Pipeline.
 
1
+ # Dataset Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ ## Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ The `load_dataset` function is a powerful tool to efficiently load and prepare the Mimic-IV dataset for various healthcare analysis tasks. It offers a wide range of options for encoding data and generating cohorts, allowing for seamless integration into your research or application.
6
+
7
+ ## Function Signature
8
+
9
+ ```python
10
+ load_dataset('thbndi/Mimic4Dataset', task, mimic_path=mimic_data, config_path=config_file, encoding=encod, generate_cohort=gen_cohort, val_size=size, cache_dir=cache)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ```
12
 
13
+ ## Arguments
14
+
15
+ 1. `task` (string, default="Mortality"):
16
+ - Description: Specifies the task you want to perform with the dataset.
17
+ - Default: "Mortality"
18
+ - Note: Possible Values : 'Phenotype', 'Length of Stay', 'Readmission', 'Mortality'
19
+
20
+ 2. `mimic_path` (string):
21
+ - Description: Complete path to the Mimic-IV raw data on user's machine.
22
+ - Note: You need to provide the appropriate path where the Mimic-IV data is stored.
23
+
24
+ 3. `config_path` (string) optionnal:
25
+ - Description: Path to the configuration file for the cohort generation choices (more infos in '/config/readme.md').
26
+ - Default: Configuration file provided in the 'config' folder.
27
 
28
+ 4. `encoding` (string, default="concat"):
29
+ - Description: Data encoding option for the features.
30
+ - Options: "concat", "aggreg", "tensor", "raw", "text"
31
+ - Default: "concat"
32
+ - Note: Choose one of the following options for data encoding:
33
+ - "concat": Concatenates the one-hot encoded diagnoses, demographic data vector, and dynamic features at each measured time instant, resulting in a high-dimensional feature vector.
34
+ - "aggreg": Concatenates the one-hot encoded diagnoses, demographic data vector, and dynamic features, where each item_id is replaced by the average of the measured time instants, resulting in a reduced-dimensional feature vector.
35
+ - "tensor": Represents each feature as an 2D array. There are separate arrays for labels, demographic data ('DEMO'), diagnosis ('COND'), medications ('MEDS'), procedures ('PROC'), chart/lab events ('CHART/LAB'), and output events data ('OUT'). Dynamic features are represented as 2D arrays where each row contains values at a specific time instant.
36
+ - "raw": Provide cohort from the pipeline without any encoding for custom data processing.
37
+ - "text": Represents diagnoses as text suitable for BERT or other similar text-based models.
38
+
39
+ 5. `generate_cohort` (bool, default=True):
40
+ - Description: Determines whether to generate a new cohort from Mimic-IV data.
41
+ - Default: True
42
+ - Note: Set it to True to generate a cohort, or False to skip cohort generation.
43
+
44
+ 6. `val_size`, 'test_size' (float):
45
+ - Description: Proportion of the dataset used for validation during training.
46
+ - Default: 0.1 for validation size and 0.2 for testing size.
47
+ - Note: Can be set to 0.
48
+
49
+ 7. `cache_dir` (string):
50
+ - Description: Directory where the processed dataset will be cached.
51
+ - Note: Providing a cache directory for each encoding type can avoid errors when changing the encoding type.
52
+
53
+ ## Example Usage
54
+
55
+ ```python
56
+ from your_module import load_dataset
57
+
58
+ # Example 1: Load dataset with default settings
59
+ dataset = load_dataset('thbndi/Mimic4Dataset', task="Mortality")
60
+
61
+ # Example 2: Load dataset with custom settings
62
+ dataset = load_dataset('thbndi/Mimic4Dataset', task="Phenotype", mimic_path="/path/to/mimic_data", config_path="/path/to/config_file", encoding="aggreg", generate_cohort=False, val_size=0.2, cache_dir="/path/to/cache_dir")
63
+ ```
64
 
65
+ Please note that the provided examples are for illustrative purposes only, and you should adjust the paths and settings based on your actual dataset and specific use case.