Update dataset_utils.py
Browse files- dataset_utils.py +22 -2
dataset_utils.py
CHANGED
@@ -3,6 +3,13 @@ import pickle
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def create_vocab(file,task):
|
8 |
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
@@ -78,6 +85,10 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
|
|
78 |
return (len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),
|
79 |
ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict,condVocabDict,procVocabDict,medVocabDict,outVocabDict,chartVocabDict,labVocabDict)
|
80 |
|
|
|
|
|
|
|
|
|
81 |
def concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
|
82 |
meds=data['Med']
|
83 |
proc = data['Proc']
|
@@ -181,7 +192,9 @@ def concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,
|
|
181 |
return dyn_df,cond_df,demo
|
182 |
|
183 |
|
184 |
-
|
|
|
|
|
185 |
def generate_deep(data,interval,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict, eth_vocab,gender_vocab,age_vocab,ins_vocab):
|
186 |
meds = []
|
187 |
charts = []
|
@@ -214,9 +227,13 @@ def generate_deep(data,interval,task,feat_cond,feat_proc,feat_out,feat_chart,fea
|
|
214 |
return stat, demo, meds, charts, out, proc, lab, y
|
215 |
|
216 |
|
|
|
|
|
|
|
|
|
217 |
def generate_ml(dyn, stat, demo, concat_cols, concat):
|
218 |
X_df = pd.DataFrame()
|
219 |
-
|
220 |
if concat:
|
221 |
dyna=dyn.copy()
|
222 |
dyna.columns=dyna.columns.droplevel(0)
|
@@ -247,6 +264,9 @@ def generate_ml(dyn, stat, demo, concat_cols, concat):
|
|
247 |
return X_df
|
248 |
|
249 |
|
|
|
|
|
|
|
250 |
def generate_text(data,icd,items,feat_cond,feat_chart,feat_meds, feat_proc, feat_out):
|
251 |
#Demographics
|
252 |
age = data['age']
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
|
6 |
+
################################################################################
|
7 |
+
################################################################################
|
8 |
+
## ##
|
9 |
+
## MIMIC IV DATASET UTILITY FUNCTIONS ##
|
10 |
+
## ##
|
11 |
+
################################################################################
|
12 |
+
################################################################################
|
13 |
|
14 |
def create_vocab(file,task):
|
15 |
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
|
|
85 |
return (len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),
|
86 |
ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict,condVocabDict,procVocabDict,medVocabDict,outVocabDict,chartVocabDict,labVocabDict)
|
87 |
|
88 |
+
###################################
|
89 |
+
# CONCATENATE DATA FROM #
|
90 |
+
# DICT TO CREATE CSV FILES #
|
91 |
+
###################################
|
92 |
def concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
|
93 |
meds=data['Med']
|
94 |
proc = data['Proc']
|
|
|
192 |
return dyn_df,cond_df,demo
|
193 |
|
194 |
|
195 |
+
###################################
|
196 |
+
# CALLED FOR "tensor" ENCODING #
|
197 |
+
###################################
|
198 |
def generate_deep(data,interval,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict, eth_vocab,gender_vocab,age_vocab,ins_vocab):
|
199 |
meds = []
|
200 |
charts = []
|
|
|
227 |
return stat, demo, meds, charts, out, proc, lab, y
|
228 |
|
229 |
|
230 |
+
###################################
|
231 |
+
# CALLED FOR "aggreg" OR #
|
232 |
+
# "concat" ENCODING #
|
233 |
+
###################################
|
234 |
def generate_ml(dyn, stat, demo, concat_cols, concat):
|
235 |
X_df = pd.DataFrame()
|
236 |
+
dyn.to_csv("./data/dyn.csv")
|
237 |
if concat:
|
238 |
dyna=dyn.copy()
|
239 |
dyna.columns=dyna.columns.droplevel(0)
|
|
|
264 |
return X_df
|
265 |
|
266 |
|
267 |
+
###################################
|
268 |
+
# CALLED FOR "text" ENCODING #
|
269 |
+
###################################
|
270 |
def generate_text(data,icd,items,feat_cond,feat_chart,feat_meds, feat_proc, feat_out):
|
271 |
#Demographics
|
272 |
age = data['age']
|