Update dataset_utils.py
Browse files- dataset_utils.py +8 -22
dataset_utils.py
CHANGED
@@ -238,13 +238,13 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
238 |
|
239 |
|
240 |
def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
|
241 |
-
meds =
|
242 |
-
charts =
|
243 |
-
proc =
|
244 |
-
out =
|
245 |
-
lab =
|
246 |
-
stat =
|
247 |
-
demo =
|
248 |
|
249 |
|
250 |
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
@@ -256,32 +256,19 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
|
|
256 |
#charts = charts.tolist()
|
257 |
|
258 |
if feat_meds:
|
259 |
-
meds = dyn['MEDS']
|
260 |
-
meds=meds.to_numpy()
|
261 |
-
meds = torch.tensor(meds, dtype=torch.long)
|
262 |
-
meds = meds.tolist()
|
263 |
|
264 |
if feat_proc:
|
265 |
proc = dyn['PROC']
|
266 |
-
proc=proc.to_numpy()
|
267 |
-
proc = torch.tensor(proc, dtype=torch.long)
|
268 |
-
proc = proc.tolist()
|
269 |
|
270 |
if feat_out:
|
271 |
out = dyn['OUT']
|
272 |
-
out=out.to_numpy()
|
273 |
-
out = torch.tensor(out, dtype=torch.long)
|
274 |
-
out = out.tolist()
|
275 |
|
276 |
if feat_lab:
|
277 |
lab = dyn['LAB']
|
278 |
-
lab=lab.to_numpy()
|
279 |
-
lab = torch.tensor(lab, dtype=torch.long)
|
280 |
-
lab = lab.tolist()
|
281 |
|
282 |
if feat_cond:
|
283 |
stat=cond_df.values[0]
|
284 |
-
print(stat)
|
285 |
#stat = stat.to_numpy()
|
286 |
|
287 |
#stat = torch.tensor(stat)
|
@@ -303,7 +290,6 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
|
|
303 |
demo["Age"].replace(age_vocab, inplace=True)
|
304 |
demo=demo[["gender","ethnicity","insurance","Age"]]
|
305 |
demo = demo.values[0]
|
306 |
-
print(demo)
|
307 |
#demo = torch.tensor(demo)
|
308 |
#if demo_df[0].nelement():
|
309 |
# demo_df = torch.cat((demo_df,demo),0)
|
|
|
238 |
|
239 |
|
240 |
def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
|
241 |
+
meds = []
|
242 |
+
charts = []
|
243 |
+
proc = []
|
244 |
+
out = []
|
245 |
+
lab = []
|
246 |
+
stat = []
|
247 |
+
demo = []
|
248 |
|
249 |
|
250 |
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
|
|
256 |
#charts = charts.tolist()
|
257 |
|
258 |
if feat_meds:
|
259 |
+
meds = dyn['MEDS'].values
|
|
|
|
|
|
|
260 |
|
261 |
if feat_proc:
|
262 |
proc = dyn['PROC']
|
|
|
|
|
|
|
263 |
|
264 |
if feat_out:
|
265 |
out = dyn['OUT']
|
|
|
|
|
|
|
266 |
|
267 |
if feat_lab:
|
268 |
lab = dyn['LAB']
|
|
|
|
|
|
|
269 |
|
270 |
if feat_cond:
|
271 |
stat=cond_df.values[0]
|
|
|
272 |
#stat = stat.to_numpy()
|
273 |
|
274 |
#stat = torch.tensor(stat)
|
|
|
290 |
demo["Age"].replace(age_vocab, inplace=True)
|
291 |
demo=demo[["gender","ethnicity","insurance","Age"]]
|
292 |
demo = demo.values[0]
|
|
|
293 |
#demo = torch.tensor(demo)
|
294 |
#if demo_df[0].nelement():
|
295 |
# demo_df = torch.cat((demo_df,demo),0)
|