thbndi commited on
Commit
88cbab5
·
1 Parent(s): 24816db

Update dataset_utils.py

Browse files
Files changed (1) hide show
  1. dataset_utils.py +8 -22
dataset_utils.py CHANGED
@@ -238,13 +238,13 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
238
 
239
 
240
  def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
241
- meds = torch.zeros(size=(0,0))
242
- charts = torch.zeros(size=(0,0))
243
- proc = torch.zeros(size=(0,0))
244
- out = torch.zeros(size=(0,0))
245
- lab = torch.zeros(size=(0,0))
246
- stat = torch.zeros(size=(1,0))
247
- demo = torch.zeros(size=(1,0))
248
 
249
 
250
  size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
@@ -256,32 +256,19 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
256
  #charts = charts.tolist()
257
 
258
  if feat_meds:
259
- meds = dyn['MEDS']
260
- meds=meds.to_numpy()
261
- meds = torch.tensor(meds, dtype=torch.long)
262
- meds = meds.tolist()
263
 
264
  if feat_proc:
265
  proc = dyn['PROC']
266
- proc=proc.to_numpy()
267
- proc = torch.tensor(proc, dtype=torch.long)
268
- proc = proc.tolist()
269
 
270
  if feat_out:
271
  out = dyn['OUT']
272
- out=out.to_numpy()
273
- out = torch.tensor(out, dtype=torch.long)
274
- out = out.tolist()
275
 
276
  if feat_lab:
277
  lab = dyn['LAB']
278
- lab=lab.to_numpy()
279
- lab = torch.tensor(lab, dtype=torch.long)
280
- lab = lab.tolist()
281
 
282
  if feat_cond:
283
  stat=cond_df.values[0]
284
- print(stat)
285
  #stat = stat.to_numpy()
286
 
287
  #stat = torch.tensor(stat)
@@ -303,7 +290,6 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
303
  demo["Age"].replace(age_vocab, inplace=True)
304
  demo=demo[["gender","ethnicity","insurance","Age"]]
305
  demo = demo.values[0]
306
- print(demo)
307
  #demo = torch.tensor(demo)
308
  #if demo_df[0].nelement():
309
  # demo_df = torch.cat((demo_df,demo),0)
 
238
 
239
 
240
  def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
241
+ meds = []
242
+ charts = []
243
+ proc = []
244
+ out = []
245
+ lab = []
246
+ stat = []
247
+ demo = []
248
 
249
 
250
  size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
 
256
  #charts = charts.tolist()
257
 
258
  if feat_meds:
259
+ meds = dyn['MEDS'].values
 
 
 
260
 
261
  if feat_proc:
262
  proc = dyn['PROC']
 
 
 
263
 
264
  if feat_out:
265
  out = dyn['OUT']
 
 
 
266
 
267
  if feat_lab:
268
  lab = dyn['LAB']
 
 
 
269
 
270
  if feat_cond:
271
  stat=cond_df.values[0]
 
272
  #stat = stat.to_numpy()
273
 
274
  #stat = torch.tensor(stat)
 
290
  demo["Age"].replace(age_vocab, inplace=True)
291
  demo=demo[["gender","ethnicity","insurance","Age"]]
292
  demo = demo.values[0]
 
293
  #demo = torch.tensor(demo)
294
  #if demo_df[0].nelement():
295
  # demo_df = torch.cat((demo_df,demo),0)