Update dataset_utils.py
Browse files- dataset_utils.py +25 -70
dataset_utils.py
CHANGED
@@ -109,19 +109,13 @@ def open_dict(task,cond, proc, out, chart, lab, med):
|
|
109 |
|
110 |
return condDict, procDict, outDict, chartDict, medDict
|
111 |
|
112 |
-
def concat_data(data,
|
113 |
meds=data['Med']
|
114 |
proc = data['Proc']
|
115 |
out = data['Out']
|
116 |
-
|
117 |
cond= data['Cond']['fids']
|
118 |
|
119 |
-
cond_df=pd.DataFrame()
|
120 |
-
proc_df=pd.DataFrame()
|
121 |
-
out_df=pd.DataFrame()
|
122 |
-
chart_df=pd.DataFrame()
|
123 |
-
meds_df=pd.DataFrame()
|
124 |
-
|
125 |
#demographic
|
126 |
demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
|
127 |
new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
|
@@ -129,102 +123,67 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
129 |
|
130 |
##########COND#########
|
131 |
if (feat_cond):
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
#onehot encode
|
136 |
-
if(cond ==[]):
|
137 |
-
cond_df=pd.DataFrame(np.zeros([1,len(features)]),columns=features['COND'])
|
138 |
-
cond_df=cond_df.fillna(0)
|
139 |
-
else:
|
140 |
-
cond_df=pd.DataFrame(cond,columns=['COND'])
|
141 |
-
cond_df['val']=1
|
142 |
-
cond_df=(cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True)
|
143 |
-
cond_df=cond_df.fillna(0)
|
144 |
-
oneh = cond_df.sum().to_frame().T
|
145 |
-
combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0)
|
146 |
-
combined_oneh=combined_df.sum().to_frame().T
|
147 |
-
cond_df=combined_oneh
|
148 |
-
for c in cond_df.columns :
|
149 |
-
if c not in features:
|
150 |
-
cond_df=cond_df.drop(columns=[c])
|
151 |
|
152 |
##########PROC#########
|
153 |
if (feat_proc):
|
154 |
if proc :
|
155 |
feat=proc.keys()
|
156 |
proc_val=[proc[key] for key in feat]
|
157 |
-
|
158 |
-
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
159 |
-
procs=pd.DataFrame(columns=feat)
|
160 |
for p,v in zip(feat,proc_val):
|
161 |
-
|
162 |
-
features=features.drop(columns=procs.columns.to_list())
|
163 |
-
proc_df = pd.concat([features,procs],axis=1).fillna(0)
|
164 |
proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
|
|
|
165 |
else:
|
166 |
procedures=pd.DataFrame(procDict,columns=['PROC'])
|
167 |
-
features=pd.DataFrame(np.zeros([
|
168 |
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
169 |
-
proc_df=features.fillna(0)
|
170 |
|
171 |
##########OUT#########
|
172 |
if (feat_out):
|
173 |
if out :
|
174 |
feat=out.keys()
|
175 |
out_val=[out[key] for key in feat]
|
176 |
-
|
177 |
-
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
178 |
-
outs=pd.DataFrame(columns=feat)
|
179 |
for o,v in zip(feat,out_val):
|
180 |
-
|
181 |
-
features=features.drop(columns=outs.columns.to_list())
|
182 |
-
out_df = pd.concat([features,outs],axis=1).fillna(0)
|
183 |
out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
|
184 |
else:
|
185 |
outputs=pd.DataFrame(outDict,columns=['OUT'])
|
186 |
-
features=pd.DataFrame(np.zeros([
|
187 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
188 |
out_df=features.fillna(0)
|
189 |
|
190 |
##########CHART#########
|
191 |
if (feat_chart):
|
192 |
-
if
|
193 |
-
charts=chart['val']
|
194 |
feat=charts.keys()
|
195 |
chart_val=[charts[key] for key in feat]
|
196 |
-
|
197 |
-
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
198 |
-
chart=pd.DataFrame(columns=feat)
|
199 |
for c,v in zip(feat,chart_val):
|
200 |
-
|
201 |
-
features=features.drop(columns=chart.columns.to_list())
|
202 |
-
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
203 |
chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
|
204 |
else:
|
205 |
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
206 |
-
features=pd.DataFrame(np.zeros([
|
207 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
208 |
chart_df=features.fillna(0)
|
209 |
##########LAB#########
|
210 |
|
211 |
if (feat_lab):
|
212 |
-
if
|
213 |
-
charts=chart['val']
|
214 |
feat=charts.keys()
|
215 |
chart_val=[charts[key] for key in feat]
|
216 |
-
|
217 |
-
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
218 |
-
chart=pd.DataFrame(columns=feat)
|
219 |
for c,v in zip(feat,chart_val):
|
220 |
-
|
221 |
-
features=features.drop(columns=chart.columns.to_list())
|
222 |
-
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
|
223 |
-
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
224 |
chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
|
225 |
else:
|
226 |
charts=pd.DataFrame(chartDict,columns=['LAB'])
|
227 |
-
features=pd.DataFrame(np.zeros([
|
228 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
229 |
chart_df=features.fillna(0)
|
230 |
|
@@ -233,17 +192,13 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
233 |
if meds:
|
234 |
feat=meds['signal'].keys()
|
235 |
med_val=[meds['amount'][key] for key in feat]
|
236 |
-
|
237 |
-
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
238 |
-
med=pd.DataFrame(columns=feat)
|
239 |
for m,v in zip(feat,med_val):
|
240 |
-
|
241 |
-
features=features.drop(columns=med.columns.to_list())
|
242 |
-
meds_df = pd.concat([features,med],axis=1).fillna(0)
|
243 |
meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
|
244 |
else:
|
245 |
meds=pd.DataFrame(medDict,columns=['MEDS'])
|
246 |
-
features=pd.DataFrame(np.zeros([
|
247 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
248 |
meds_df=features.fillna(0)
|
249 |
|
@@ -252,7 +207,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
252 |
|
253 |
|
254 |
|
255 |
-
def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
|
256 |
meds = []
|
257 |
charts = []
|
258 |
proc = []
|
@@ -262,7 +217,7 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
|
|
262 |
demo = []
|
263 |
|
264 |
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
265 |
-
dyn,cond_df,demo=concat_data(data,
|
266 |
if feat_chart:
|
267 |
charts = dyn['CHART'].fillna(0).values
|
268 |
if feat_meds:
|
|
|
109 |
|
110 |
return condDict, procDict, outDict, chartDict, medDict
|
111 |
|
112 |
+
def concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
|
113 |
meds=data['Med']
|
114 |
proc = data['Proc']
|
115 |
out = data['Out']
|
116 |
+
charts = data['Chart']['val']
|
117 |
cond= data['Cond']['fids']
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
#demographic
|
120 |
demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
|
121 |
new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
|
|
|
123 |
|
124 |
##########COND#########
|
125 |
if (feat_cond):
|
126 |
+
cond_df=pd.DataFrame(np.zeros([1,len(condDict)]),columns=condDict)
|
127 |
+
if cond:
|
128 |
+
for c in cond : cond_df[c]=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
##########PROC#########
|
131 |
if (feat_proc):
|
132 |
if proc :
|
133 |
feat=proc.keys()
|
134 |
proc_val=[proc[key] for key in feat]
|
135 |
+
proc_df=pd.DataFrame(np.zeros([interval,len(procDict)]),columns=procDict)
|
|
|
|
|
136 |
for p,v in zip(feat,proc_val):
|
137 |
+
proc_df[p]=v
|
|
|
|
|
138 |
proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
|
139 |
+
print(proc_df)
|
140 |
else:
|
141 |
procedures=pd.DataFrame(procDict,columns=['PROC'])
|
142 |
+
features=pd.DataFrame(np.zeros([interval,len(procedures)]),columns=procedures['PROC'])
|
143 |
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
|
|
144 |
|
145 |
##########OUT#########
|
146 |
if (feat_out):
|
147 |
if out :
|
148 |
feat=out.keys()
|
149 |
out_val=[out[key] for key in feat]
|
150 |
+
out_df=pd.DataFrame(np.zeros([interval,len(outDict)]),columns=outDict)
|
|
|
|
|
151 |
for o,v in zip(feat,out_val):
|
152 |
+
out_df[o]=v
|
|
|
|
|
153 |
out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
|
154 |
else:
|
155 |
outputs=pd.DataFrame(outDict,columns=['OUT'])
|
156 |
+
features=pd.DataFrame(np.zeros([interval,len(outputs)]),columns=outputs['OUT'])
|
157 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
158 |
out_df=features.fillna(0)
|
159 |
|
160 |
##########CHART#########
|
161 |
if (feat_chart):
|
162 |
+
if charts:
|
|
|
163 |
feat=charts.keys()
|
164 |
chart_val=[charts[key] for key in feat]
|
165 |
+
chart_df=pd.DataFrame(np.zeros([interval,len(chartDict)]),columns=chartDict)
|
|
|
|
|
166 |
for c,v in zip(feat,chart_val):
|
167 |
+
chart_df[c]=v
|
|
|
|
|
168 |
chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
|
169 |
else:
|
170 |
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
171 |
+
features=pd.DataFrame(np.zeros([interval,len(charts)]),columns=charts['CHART'])
|
172 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
173 |
chart_df=features.fillna(0)
|
174 |
##########LAB#########
|
175 |
|
176 |
if (feat_lab):
|
177 |
+
if charts:
|
|
|
178 |
feat=charts.keys()
|
179 |
chart_val=[charts[key] for key in feat]
|
180 |
+
chart_df=pd.DataFrame(np.zeros([interval,len(chartDict)]),columns=chartDict)
|
|
|
|
|
181 |
for c,v in zip(feat,chart_val):
|
182 |
+
chart_df[c]=v
|
|
|
|
|
|
|
183 |
chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
|
184 |
else:
|
185 |
charts=pd.DataFrame(chartDict,columns=['LAB'])
|
186 |
+
features=pd.DataFrame(np.zeros([interval,len(charts)]),columns=charts['LAB'])
|
187 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
188 |
chart_df=features.fillna(0)
|
189 |
|
|
|
192 |
if meds:
|
193 |
feat=meds['signal'].keys()
|
194 |
med_val=[meds['amount'][key] for key in feat]
|
195 |
+
meds_df=pd.DataFrame(np.zeros([interval,len(medDict)]),columns=medDict)
|
|
|
|
|
196 |
for m,v in zip(feat,med_val):
|
197 |
+
meds_df[m]=v
|
|
|
|
|
198 |
meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
|
199 |
else:
|
200 |
meds=pd.DataFrame(medDict,columns=['MEDS'])
|
201 |
+
features=pd.DataFrame(np.zeros([interval,len(meds)]),columns=meds['MEDS'])
|
202 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
203 |
meds_df=features.fillna(0)
|
204 |
|
|
|
207 |
|
208 |
|
209 |
|
210 |
+
def generate_deep(data,interval,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
|
211 |
meds = []
|
212 |
charts = []
|
213 |
proc = []
|
|
|
217 |
demo = []
|
218 |
|
219 |
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
220 |
+
dyn,cond_df,demo=concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict)
|
221 |
if feat_chart:
|
222 |
charts = dyn['CHART'].fillna(0).values
|
223 |
if feat_meds:
|