Update dataset_utils.py
Browse files- dataset_utils.py +47 -32
dataset_utils.py
CHANGED
@@ -77,7 +77,39 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
|
|
77 |
|
78 |
return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
79 |
|
80 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
meds=data['Med']
|
82 |
proc = data['Proc']
|
83 |
out = data['Out']
|
@@ -97,10 +129,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
97 |
|
98 |
##########COND#########
|
99 |
if (feat_cond):
|
100 |
-
|
101 |
-
with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
|
102 |
-
conDict = pickle.load(fp)
|
103 |
-
conds=pd.DataFrame(conDict,columns=['COND'])
|
104 |
features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])
|
105 |
|
106 |
#onehot encode
|
@@ -122,13 +151,10 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
122 |
|
123 |
##########PROC#########
|
124 |
if (feat_proc):
|
125 |
-
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
|
126 |
-
procDic = pickle.load(fp)
|
127 |
-
|
128 |
if proc :
|
129 |
feat=proc.keys()
|
130 |
proc_val=[proc[key] for key in feat]
|
131 |
-
procedures=pd.DataFrame(
|
132 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
133 |
procs=pd.DataFrame(columns=feat)
|
134 |
for p,v in zip(feat,proc_val):
|
@@ -137,20 +163,17 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
137 |
proc_df = pd.concat([features,procs],axis=1).fillna(0)
|
138 |
proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
|
139 |
else:
|
140 |
-
procedures=pd.DataFrame(
|
141 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
142 |
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
143 |
proc_df=features.fillna(0)
|
144 |
|
145 |
##########OUT#########
|
146 |
if (feat_out):
|
147 |
-
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
|
148 |
-
outDic = pickle.load(fp)
|
149 |
-
|
150 |
if out :
|
151 |
feat=out.keys()
|
152 |
out_val=[out[key] for key in feat]
|
153 |
-
outputs=pd.DataFrame(
|
154 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
155 |
outs=pd.DataFrame(columns=feat)
|
156 |
for o,v in zip(feat,out_val):
|
@@ -159,21 +182,18 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
159 |
out_df = pd.concat([features,outs],axis=1).fillna(0)
|
160 |
out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
|
161 |
else:
|
162 |
-
outputs=pd.DataFrame(
|
163 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
164 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
165 |
out_df=features.fillna(0)
|
166 |
|
167 |
##########CHART#########
|
168 |
if (feat_chart):
|
169 |
-
with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
|
170 |
-
chartDic = pickle.load(fp)
|
171 |
-
|
172 |
if chart:
|
173 |
charts=chart['val']
|
174 |
feat=charts.keys()
|
175 |
chart_val=[charts[key] for key in feat]
|
176 |
-
charts=pd.DataFrame(
|
177 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
178 |
chart=pd.DataFrame(columns=feat)
|
179 |
for c,v in zip(feat,chart_val):
|
@@ -182,20 +202,18 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
182 |
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
183 |
chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
|
184 |
else:
|
185 |
-
charts=pd.DataFrame(
|
186 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
187 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
188 |
chart_df=features.fillna(0)
|
189 |
##########LAB#########
|
|
|
190 |
if (feat_lab):
|
191 |
-
with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
|
192 |
-
chartDic = pickle.load(fp)
|
193 |
-
|
194 |
if chart:
|
195 |
charts=chart['val']
|
196 |
feat=charts.keys()
|
197 |
chart_val=[charts[key] for key in feat]
|
198 |
-
charts=pd.DataFrame(
|
199 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
200 |
chart=pd.DataFrame(columns=feat)
|
201 |
for c,v in zip(feat,chart_val):
|
@@ -205,20 +223,17 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
205 |
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
206 |
chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
|
207 |
else:
|
208 |
-
charts=pd.DataFrame(
|
209 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
210 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
211 |
chart_df=features.fillna(0)
|
212 |
|
213 |
###MEDS
|
214 |
if (feat_meds):
|
215 |
-
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
|
216 |
-
medDic = pickle.load(fp)
|
217 |
-
|
218 |
if meds:
|
219 |
feat=meds['signal'].keys()
|
220 |
med_val=[meds['amount'][key] for key in feat]
|
221 |
-
meds=pd.DataFrame(
|
222 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
223 |
med=pd.DataFrame(columns=feat)
|
224 |
for m,v in zip(feat,med_val):
|
@@ -227,7 +242,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
227 |
meds_df = pd.concat([features,med],axis=1).fillna(0)
|
228 |
meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
|
229 |
else:
|
230 |
-
meds=pd.DataFrame(
|
231 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
232 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
233 |
meds_df=features.fillna(0)
|
@@ -237,7 +252,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
237 |
|
238 |
|
239 |
|
240 |
-
def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
|
241 |
meds = []
|
242 |
charts = []
|
243 |
proc = []
|
@@ -247,7 +262,7 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
|
|
247 |
demo = []
|
248 |
|
249 |
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
250 |
-
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab)
|
251 |
if feat_chart:
|
252 |
charts = dyn['CHART'].values
|
253 |
|
|
|
77 |
|
78 |
return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
79 |
|
80 |
+
def open_dict(task,cond, proc, out, chart, lab, med):
|
81 |
+
if cond:
|
82 |
+
with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
|
83 |
+
condDict = pickle.load(fp)
|
84 |
+
else:
|
85 |
+
condDict = None
|
86 |
+
if proc:
|
87 |
+
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
|
88 |
+
procDict = pickle.load(fp)
|
89 |
+
else:
|
90 |
+
procDict = None
|
91 |
+
if out:
|
92 |
+
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
|
93 |
+
outDict = pickle.load(fp)
|
94 |
+
else:
|
95 |
+
outDict = None
|
96 |
+
if chart:
|
97 |
+
with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
|
98 |
+
chartDict = pickle.load(fp)
|
99 |
+
elif lab:
|
100 |
+
with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
|
101 |
+
chartDict = pickle.load(fp)
|
102 |
+
else:
|
103 |
+
chartDict = None
|
104 |
+
if med:
|
105 |
+
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
|
106 |
+
medDict = pickle.load(fp)
|
107 |
+
else:
|
108 |
+
medDict = None
|
109 |
+
|
110 |
+
return condDict, procDict, outDict, chartDict, medDict
|
111 |
+
|
112 |
+
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
|
113 |
meds=data['Med']
|
114 |
proc = data['Proc']
|
115 |
out = data['Out']
|
|
|
129 |
|
130 |
##########COND#########
|
131 |
if (feat_cond):
|
132 |
+
conds=pd.DataFrame(condDict,columns=['COND'])
|
|
|
|
|
|
|
133 |
features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])
|
134 |
|
135 |
#onehot encode
|
|
|
151 |
|
152 |
##########PROC#########
|
153 |
if (feat_proc):
|
|
|
|
|
|
|
154 |
if proc :
|
155 |
feat=proc.keys()
|
156 |
proc_val=[proc[key] for key in feat]
|
157 |
+
procedures=pd.DataFrame(procDict,columns=['PROC'])
|
158 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
159 |
procs=pd.DataFrame(columns=feat)
|
160 |
for p,v in zip(feat,proc_val):
|
|
|
163 |
proc_df = pd.concat([features,procs],axis=1).fillna(0)
|
164 |
proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
|
165 |
else:
|
166 |
+
procedures=pd.DataFrame(procDict,columns=['PROC'])
|
167 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
168 |
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
169 |
proc_df=features.fillna(0)
|
170 |
|
171 |
##########OUT#########
|
172 |
if (feat_out):
|
|
|
|
|
|
|
173 |
if out :
|
174 |
feat=out.keys()
|
175 |
out_val=[out[key] for key in feat]
|
176 |
+
outputs=pd.DataFrame(outDict,columns=['OUT'])
|
177 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
178 |
outs=pd.DataFrame(columns=feat)
|
179 |
for o,v in zip(feat,out_val):
|
|
|
182 |
out_df = pd.concat([features,outs],axis=1).fillna(0)
|
183 |
out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
|
184 |
else:
|
185 |
+
outputs=pd.DataFrame(outDict,columns=['OUT'])
|
186 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
187 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
188 |
out_df=features.fillna(0)
|
189 |
|
190 |
##########CHART#########
|
191 |
if (feat_chart):
|
|
|
|
|
|
|
192 |
if chart:
|
193 |
charts=chart['val']
|
194 |
feat=charts.keys()
|
195 |
chart_val=[charts[key] for key in feat]
|
196 |
+
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
197 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
198 |
chart=pd.DataFrame(columns=feat)
|
199 |
for c,v in zip(feat,chart_val):
|
|
|
202 |
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
203 |
chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
|
204 |
else:
|
205 |
+
charts=pd.DataFrame(chartDict,columns=['CHART'])
|
206 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
207 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
208 |
chart_df=features.fillna(0)
|
209 |
##########LAB#########
|
210 |
+
|
211 |
if (feat_lab):
|
|
|
|
|
|
|
212 |
if chart:
|
213 |
charts=chart['val']
|
214 |
feat=charts.keys()
|
215 |
chart_val=[charts[key] for key in feat]
|
216 |
+
charts=pd.DataFrame(chartDict,columns=['LAB'])
|
217 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
218 |
chart=pd.DataFrame(columns=feat)
|
219 |
for c,v in zip(feat,chart_val):
|
|
|
223 |
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
224 |
chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
|
225 |
else:
|
226 |
+
charts=pd.DataFrame(chartDict,columns=['LAB'])
|
227 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
228 |
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
229 |
chart_df=features.fillna(0)
|
230 |
|
231 |
###MEDS
|
232 |
if (feat_meds):
|
|
|
|
|
|
|
233 |
if meds:
|
234 |
feat=meds['signal'].keys()
|
235 |
med_val=[meds['amount'][key] for key in feat]
|
236 |
+
meds=pd.DataFrame(medDict,columns=['MEDS'])
|
237 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
238 |
med=pd.DataFrame(columns=feat)
|
239 |
for m,v in zip(feat,med_val):
|
|
|
242 |
meds_df = pd.concat([features,med],axis=1).fillna(0)
|
243 |
meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
|
244 |
else:
|
245 |
+
meds=pd.DataFrame(medDict,columns=['MEDS'])
|
246 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
247 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
248 |
meds_df=features.fillna(0)
|
|
|
252 |
|
253 |
|
254 |
|
255 |
+
def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
|
256 |
meds = []
|
257 |
charts = []
|
258 |
proc = []
|
|
|
262 |
demo = []
|
263 |
|
264 |
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
265 |
+
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict)
|
266 |
if feat_chart:
|
267 |
charts = dyn['CHART'].values
|
268 |
|