thbndi commited on
Commit
cad1204
·
1 Parent(s): 9dec6dd

Update dataset_utils.py

Browse files
Files changed (1) hide show
  1. dataset_utils.py +47 -32
dataset_utils.py CHANGED
@@ -77,7 +77,39 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
77
 
78
  return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
79
 
80
- def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  meds=data['Med']
82
  proc = data['Proc']
83
  out = data['Out']
@@ -97,10 +129,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
97
 
98
  ##########COND#########
99
  if (feat_cond):
100
- #get all conds
101
- with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
102
- conDict = pickle.load(fp)
103
- conds=pd.DataFrame(conDict,columns=['COND'])
104
  features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])
105
 
106
  #onehot encode
@@ -122,13 +151,10 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
122
 
123
  ##########PROC#########
124
  if (feat_proc):
125
- with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
126
- procDic = pickle.load(fp)
127
-
128
  if proc :
129
  feat=proc.keys()
130
  proc_val=[proc[key] for key in feat]
131
- procedures=pd.DataFrame(procDic,columns=['PROC'])
132
  features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
133
  procs=pd.DataFrame(columns=feat)
134
  for p,v in zip(feat,proc_val):
@@ -137,20 +163,17 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
137
  proc_df = pd.concat([features,procs],axis=1).fillna(0)
138
  proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
139
  else:
140
- procedures=pd.DataFrame(procDic,columns=['PROC'])
141
  features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
142
  features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
143
  proc_df=features.fillna(0)
144
 
145
  ##########OUT#########
146
  if (feat_out):
147
- with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
148
- outDic = pickle.load(fp)
149
-
150
  if out :
151
  feat=out.keys()
152
  out_val=[out[key] for key in feat]
153
- outputs=pd.DataFrame(outDic,columns=['OUT'])
154
  features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
155
  outs=pd.DataFrame(columns=feat)
156
  for o,v in zip(feat,out_val):
@@ -159,21 +182,18 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
159
  out_df = pd.concat([features,outs],axis=1).fillna(0)
160
  out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
161
  else:
162
- outputs=pd.DataFrame(outDic,columns=['OUT'])
163
  features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
164
  features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
165
  out_df=features.fillna(0)
166
 
167
  ##########CHART#########
168
  if (feat_chart):
169
- with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
170
- chartDic = pickle.load(fp)
171
-
172
  if chart:
173
  charts=chart['val']
174
  feat=charts.keys()
175
  chart_val=[charts[key] for key in feat]
176
- charts=pd.DataFrame(chartDic,columns=['CHART'])
177
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
178
  chart=pd.DataFrame(columns=feat)
179
  for c,v in zip(feat,chart_val):
@@ -182,20 +202,18 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
182
  chart_df = pd.concat([features,chart],axis=1).fillna(0)
183
  chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
184
  else:
185
- charts=pd.DataFrame(chartDic,columns=['CHART'])
186
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
187
  features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
188
  chart_df=features.fillna(0)
189
  ##########LAB#########
 
190
  if (feat_lab):
191
- with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
192
- chartDic = pickle.load(fp)
193
-
194
  if chart:
195
  charts=chart['val']
196
  feat=charts.keys()
197
  chart_val=[charts[key] for key in feat]
198
- charts=pd.DataFrame(chartDic,columns=['LAB'])
199
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
200
  chart=pd.DataFrame(columns=feat)
201
  for c,v in zip(feat,chart_val):
@@ -205,20 +223,17 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
205
  chart_df = pd.concat([features,chart],axis=1).fillna(0)
206
  chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
207
  else:
208
- charts=pd.DataFrame(chartDic,columns=['LAB'])
209
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
210
  features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
211
  chart_df=features.fillna(0)
212
 
213
  ###MEDS
214
  if (feat_meds):
215
- with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
216
- medDic = pickle.load(fp)
217
-
218
  if meds:
219
  feat=meds['signal'].keys()
220
  med_val=[meds['amount'][key] for key in feat]
221
- meds=pd.DataFrame(medDic,columns=['MEDS'])
222
  features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
223
  med=pd.DataFrame(columns=feat)
224
  for m,v in zip(feat,med_val):
@@ -227,7 +242,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
227
  meds_df = pd.concat([features,med],axis=1).fillna(0)
228
  meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
229
  else:
230
- meds=pd.DataFrame(medDic,columns=['MEDS'])
231
  features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
232
  features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
233
  meds_df=features.fillna(0)
@@ -237,7 +252,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
237
 
238
 
239
 
240
- def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
241
  meds = []
242
  charts = []
243
  proc = []
@@ -247,7 +262,7 @@ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,fe
247
  demo = []
248
 
249
  size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
250
- dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab)
251
  if feat_chart:
252
  charts = dyn['CHART'].values
253
 
 
77
 
78
  return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
79
 
80
+ def open_dict(task,cond, proc, out, chart, lab, med):
81
+ if cond:
82
+ with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
83
+ condDict = pickle.load(fp)
84
+ else:
85
+ condDict = None
86
+ if proc:
87
+ with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
88
+ procDict = pickle.load(fp)
89
+ else:
90
+ procDict = None
91
+ if out:
92
+ with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
93
+ outDict = pickle.load(fp)
94
+ else:
95
+ outDict = None
96
+ if chart:
97
+ with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
98
+ chartDict = pickle.load(fp)
99
+ elif lab:
100
+ with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
101
+ chartDict = pickle.load(fp)
102
+ else:
103
+ chartDict = None
104
+ if med:
105
+ with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
106
+ medDict = pickle.load(fp)
107
+ else:
108
+ medDict = None
109
+
110
+ return condDict, procDict, outDict, chartDict, medDict
111
+
112
+ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
113
  meds=data['Med']
114
  proc = data['Proc']
115
  out = data['Out']
 
129
 
130
  ##########COND#########
131
  if (feat_cond):
132
+ conds=pd.DataFrame(condDict,columns=['COND'])
 
 
 
133
  features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])
134
 
135
  #onehot encode
 
151
 
152
  ##########PROC#########
153
  if (feat_proc):
 
 
 
154
  if proc :
155
  feat=proc.keys()
156
  proc_val=[proc[key] for key in feat]
157
+ procedures=pd.DataFrame(procDict,columns=['PROC'])
158
  features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
159
  procs=pd.DataFrame(columns=feat)
160
  for p,v in zip(feat,proc_val):
 
163
  proc_df = pd.concat([features,procs],axis=1).fillna(0)
164
  proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
165
  else:
166
+ procedures=pd.DataFrame(procDict,columns=['PROC'])
167
  features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
168
  features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
169
  proc_df=features.fillna(0)
170
 
171
  ##########OUT#########
172
  if (feat_out):
 
 
 
173
  if out :
174
  feat=out.keys()
175
  out_val=[out[key] for key in feat]
176
+ outputs=pd.DataFrame(outDict,columns=['OUT'])
177
  features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
178
  outs=pd.DataFrame(columns=feat)
179
  for o,v in zip(feat,out_val):
 
182
  out_df = pd.concat([features,outs],axis=1).fillna(0)
183
  out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
184
  else:
185
+ outputs=pd.DataFrame(outDict,columns=['OUT'])
186
  features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
187
  features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
188
  out_df=features.fillna(0)
189
 
190
  ##########CHART#########
191
  if (feat_chart):
 
 
 
192
  if chart:
193
  charts=chart['val']
194
  feat=charts.keys()
195
  chart_val=[charts[key] for key in feat]
196
+ charts=pd.DataFrame(chartDict,columns=['CHART'])
197
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
198
  chart=pd.DataFrame(columns=feat)
199
  for c,v in zip(feat,chart_val):
 
202
  chart_df = pd.concat([features,chart],axis=1).fillna(0)
203
  chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
204
  else:
205
+ charts=pd.DataFrame(chartDict,columns=['CHART'])
206
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
207
  features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
208
  chart_df=features.fillna(0)
209
  ##########LAB#########
210
+
211
  if (feat_lab):
 
 
 
212
  if chart:
213
  charts=chart['val']
214
  feat=charts.keys()
215
  chart_val=[charts[key] for key in feat]
216
+ charts=pd.DataFrame(chartDict,columns=['LAB'])
217
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
218
  chart=pd.DataFrame(columns=feat)
219
  for c,v in zip(feat,chart_val):
 
223
  chart_df = pd.concat([features,chart],axis=1).fillna(0)
224
  chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
225
  else:
226
+ charts=pd.DataFrame(chartDict,columns=['LAB'])
227
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
228
  features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
229
  chart_df=features.fillna(0)
230
 
231
  ###MEDS
232
  if (feat_meds):
 
 
 
233
  if meds:
234
  feat=meds['signal'].keys()
235
  med_val=[meds['amount'][key] for key in feat]
236
+ meds=pd.DataFrame(medDict,columns=['MEDS'])
237
  features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
238
  med=pd.DataFrame(columns=feat)
239
  for m,v in zip(feat,med_val):
 
242
  meds_df = pd.concat([features,med],axis=1).fillna(0)
243
  meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
244
  else:
245
+ meds=pd.DataFrame(medDict,columns=['MEDS'])
246
  features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
247
  features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
248
  meds_df=features.fillna(0)
 
252
 
253
 
254
 
255
+ def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
256
  meds = []
257
  charts = []
258
  proc = []
 
262
  demo = []
263
 
264
  size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
265
+ dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict)
266
  if feat_chart:
267
  charts = dyn['CHART'].values
268