Upload 4 files
Browse files- Mimic4Dataset.py +528 -0
- check_config.py +118 -0
- dataset_utils.py +345 -0
- task_cohort.py +173 -0
Mimic4Dataset.py
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import datasets
|
4 |
+
import sys
|
5 |
+
import pickle
|
6 |
+
import subprocess
|
7 |
+
import shutil
|
8 |
+
from urllib.request import urlretrieve
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
from sklearn.preprocessing import LabelEncoder
|
11 |
+
import yaml
|
12 |
+
from .task_cohort import task_cohort
|
13 |
+
from .dataset_utils import *
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
Dataset for mimic4 data, by default for the Mortality task.
|
19 |
+
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype.
|
20 |
+
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main'
|
21 |
+
mimic path should have this form : "path/to/mimic4data/from/username/mimiciv/2.2"
|
22 |
+
If you choose a Custom task provide a configuration file for the Time series.
|
23 |
+
Currently working with Mimic-IV version 1 and 2
|
24 |
+
"""
|
25 |
+
_BASE_URL = "https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main"
|
26 |
+
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"
|
27 |
+
|
28 |
+
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
|
29 |
+
_GIT_URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"
|
30 |
+
_CONFIG_URLS = {'los' : f"{_BASE_URL}/config/los.config",
|
31 |
+
'mortality' : f"{_BASE_URL}/config/mortality.config",
|
32 |
+
'phenotype' : f"{_BASE_URL}/config/phenotype.config",
|
33 |
+
'readmission' : f"{_BASE_URL}/config/readmission.config"
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
class Mimic4DatasetConfig(datasets.BuilderConfig):
|
38 |
+
"""BuilderConfig for Mimic4Dataset."""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
**kwargs,
|
43 |
+
):
|
44 |
+
super().__init__(**kwargs)
|
45 |
+
|
46 |
+
|
47 |
+
class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
48 |
+
"""Create Mimic4Dataset dataset from Mimic-IV data stored in user machine."""
|
49 |
+
VERSION = datasets.Version("1.0.0")
|
50 |
+
|
51 |
+
def __init__(self, **kwargs):
|
52 |
+
self.mimic_path = kwargs.pop("mimic_path", None)
|
53 |
+
self.encoding = kwargs.pop("encoding",'concat')
|
54 |
+
self.config_path = kwargs.pop("config_path",None)
|
55 |
+
self.test_size = kwargs.pop("test_size",0.2)
|
56 |
+
self.val_size = kwargs.pop("val_size",0.1)
|
57 |
+
self.generate_cohort = kwargs.pop("generate_cohort",True)
|
58 |
+
|
59 |
+
if self.encoding == 'concat':
|
60 |
+
self.concat = True
|
61 |
+
else:
|
62 |
+
self.concat = False
|
63 |
+
|
64 |
+
super().__init__(**kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
BUILDER_CONFIGS = [
|
68 |
+
Mimic4DatasetConfig(
|
69 |
+
name="Phenotype",
|
70 |
+
version=VERSION,
|
71 |
+
description="Dataset for mimic4 Phenotype task"
|
72 |
+
),
|
73 |
+
Mimic4DatasetConfig(
|
74 |
+
name="Readmission",
|
75 |
+
version=VERSION,
|
76 |
+
description="Dataset for mimic4 Readmission task"
|
77 |
+
),
|
78 |
+
Mimic4DatasetConfig(
|
79 |
+
name="Length of Stay",
|
80 |
+
version=VERSION,
|
81 |
+
description="Dataset for mimic4 Length of Stay task"
|
82 |
+
),
|
83 |
+
Mimic4DatasetConfig(
|
84 |
+
name="Mortality",
|
85 |
+
version=VERSION,
|
86 |
+
description="Dataset for mimic4 Mortality task"
|
87 |
+
),
|
88 |
+
]
|
89 |
+
|
90 |
+
DEFAULT_CONFIG_NAME = "Mortality"
|
91 |
+
|
92 |
+
def create_cohort(self):
|
93 |
+
if self.config_path==None:
|
94 |
+
if self.config.name == 'Phenotype' : self.config_path = _CONFIG_URLS['phenotype']
|
95 |
+
if self.config.name == 'Readmission' : self.config_path = _CONFIG_URLS['readmission']
|
96 |
+
if self.config.name == 'Length of Stay' : self.config_path = _CONFIG_URLS['los']
|
97 |
+
if self.config.name == 'Mortality' : self.config_path = _CONFIG_URLS['mortality']
|
98 |
+
|
99 |
+
version = self.mimic_path.split('/')[-1]
|
100 |
+
mimic_folder= self.mimic_path.split('/')[-2]
|
101 |
+
mimic_complete_path='/'+mimic_folder+'/'+version
|
102 |
+
|
103 |
+
current_directory = os.getcwd()
|
104 |
+
if os.path.exists(os.path.dirname(current_directory)+'/MIMIC-IV-Data-Pipeline-main'):
|
105 |
+
dir =os.path.dirname(current_directory)
|
106 |
+
os.chdir(dir)
|
107 |
+
else:
|
108 |
+
#move to parent directory of mimic data
|
109 |
+
dir = self.mimic_path.replace(mimic_complete_path,'')
|
110 |
+
if dir[-1]!='/':
|
111 |
+
dir=dir+'/'
|
112 |
+
elif dir=='':
|
113 |
+
dir="./"
|
114 |
+
parent_dir = os.path.dirname(self.mimic_path)
|
115 |
+
os.chdir(parent_dir)
|
116 |
+
|
117 |
+
#####################clone git repo if doesnt exists
|
118 |
+
repo_url='https://github.com/healthylaife/MIMIC-IV-Data-Pipeline'
|
119 |
+
if os.path.exists('MIMIC-IV-Data-Pipeline-main'):
|
120 |
+
path_bench = './MIMIC-IV-Data-Pipeline-main'
|
121 |
+
else:
|
122 |
+
path_bench ='./MIMIC-IV-Data-Pipeline-main'
|
123 |
+
subprocess.run(["git", "clone", repo_url, path_bench])
|
124 |
+
os.makedirs(path_bench+'/mimic-iv')
|
125 |
+
shutil.move(version,path_bench+'/mimic-iv')
|
126 |
+
|
127 |
+
os.chdir(path_bench)
|
128 |
+
self.mimic_path = './mimic-iv/'+version
|
129 |
+
|
130 |
+
####################Get configurations param
|
131 |
+
#download config file if not custom
|
132 |
+
if self.config_path[0:4] == 'http':
|
133 |
+
c = self.config_path.split('/')[-1]
|
134 |
+
file_path, head = urlretrieve(self.config_path,c)
|
135 |
+
else :
|
136 |
+
file_path = self.config_path
|
137 |
+
|
138 |
+
if not os.path.exists('./config'):
|
139 |
+
os.makedirs('config')
|
140 |
+
#save config file in config folder
|
141 |
+
self.conf='./config/'+file_path.split('/')[-1]
|
142 |
+
if not os.path.exists(self.conf):
|
143 |
+
shutil.move(file_path,'./config')
|
144 |
+
with open(self.conf) as f:
|
145 |
+
config = yaml.safe_load(f)
|
146 |
+
timeW = config['timeWindow']
|
147 |
+
self.timeW=int(timeW.split()[1])
|
148 |
+
self.bucket = config['timebucket']
|
149 |
+
self.data_icu = config['icu_no_icu']=='ICU'
|
150 |
+
if self.data_icu:
|
151 |
+
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out, self.lab = config['diagnosis'], config['chart'], config['proc'], config['meds'], config['output'], False
|
152 |
+
self.feat_lab = False
|
153 |
+
else:
|
154 |
+
self.feat_cond, self.feat_lab, self.feat_proc, self.feat_meds, self.feat_chart, self.out = config['diagnosis'], config['lab'], config['proc'], config['meds'], False, False
|
155 |
+
self.feat_out = False
|
156 |
+
self.feat_chart = False
|
157 |
+
|
158 |
+
data_dir = "./data/dict/"+self.config.name.replace(" ","_")+"/dataDic"
|
159 |
+
sys.path.append(path_bench)
|
160 |
+
config = self.config_path.split('/')[-1]
|
161 |
+
|
162 |
+
#####################create task cohort
|
163 |
+
if self.generate_cohort:
|
164 |
+
task_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
|
165 |
+
|
166 |
+
#####################Split data into train, test and val
|
167 |
+
with open(data_dir, 'rb') as fp:
|
168 |
+
dataDic = pickle.load(fp)
|
169 |
+
data = pd.DataFrame.from_dict(dataDic)
|
170 |
+
|
171 |
+
dict_dir = "./data/dict/"+self.config.name.replace(" ","_")
|
172 |
+
|
173 |
+
data=data.T
|
174 |
+
train_data, test_data = train_test_split(data, test_size=self.test_size, random_state=42)
|
175 |
+
if self.val_size > 0 :
|
176 |
+
train_data, val_data = train_test_split(train_data, test_size=self.val_size, random_state=42)
|
177 |
+
val_dic = val_data.to_dict('index')
|
178 |
+
val_path = dict_dir+'/val_data.pkl'
|
179 |
+
with open(val_path, 'wb') as f:
|
180 |
+
pickle.dump(val_dic, f)
|
181 |
+
|
182 |
+
train_dic = train_data.to_dict('index')
|
183 |
+
test_dic = test_data.to_dict('index')
|
184 |
+
|
185 |
+
train_path = dict_dir+'/train_data.pkl'
|
186 |
+
test_path = dict_dir+'/test_data.pkl'
|
187 |
+
|
188 |
+
|
189 |
+
with open(train_path, 'wb') as f:
|
190 |
+
pickle.dump(train_dic, f)
|
191 |
+
|
192 |
+
with open(test_path, 'wb') as f:
|
193 |
+
pickle.dump(test_dic, f)
|
194 |
+
|
195 |
+
return dict_dir
|
196 |
+
|
197 |
+
###########################################################RAW##################################################################
|
198 |
+
|
199 |
+
def _info_raw(self):
|
200 |
+
features = datasets.Features(
|
201 |
+
{
|
202 |
+
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
203 |
+
"gender": datasets.Value("string"),
|
204 |
+
"ethnicity": datasets.Value("string"),
|
205 |
+
"insurance": datasets.Value("string"),
|
206 |
+
"age": datasets.Value("int32"),
|
207 |
+
"COND": datasets.Sequence(datasets.Value("string")),
|
208 |
+
"MEDS": {
|
209 |
+
"signal":
|
210 |
+
{
|
211 |
+
"id": datasets.Sequence(datasets.Value("int32")),
|
212 |
+
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
|
213 |
+
}
|
214 |
+
,
|
215 |
+
"rate":
|
216 |
+
{
|
217 |
+
"id": datasets.Sequence(datasets.Value("int32")),
|
218 |
+
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
|
219 |
+
}
|
220 |
+
,
|
221 |
+
"amount":
|
222 |
+
{
|
223 |
+
"id": datasets.Sequence(datasets.Value("int32")),
|
224 |
+
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
|
225 |
+
}
|
226 |
+
|
227 |
+
},
|
228 |
+
"PROC": {
|
229 |
+
"id": datasets.Sequence(datasets.Value("int32")),
|
230 |
+
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
|
231 |
+
},
|
232 |
+
"CHART/LAB":
|
233 |
+
{
|
234 |
+
"signal" : {
|
235 |
+
"id": datasets.Sequence(datasets.Value("int32")),
|
236 |
+
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
|
237 |
+
},
|
238 |
+
"val" : {
|
239 |
+
"id": datasets.Sequence(datasets.Value("int32")),
|
240 |
+
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
|
241 |
+
},
|
242 |
+
},
|
243 |
+
"OUT": {
|
244 |
+
"id": datasets.Sequence(datasets.Value("int32")),
|
245 |
+
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
|
246 |
+
},
|
247 |
+
|
248 |
+
}
|
249 |
+
)
|
250 |
+
return datasets.DatasetInfo(
|
251 |
+
description=_DESCRIPTION,
|
252 |
+
features=features,
|
253 |
+
homepage=_HOMEPAGE,
|
254 |
+
citation=_CITATION,
|
255 |
+
)
|
256 |
+
|
257 |
+
def _generate_examples_raw(self, filepath):
|
258 |
+
with open(filepath, 'rb') as fp:
|
259 |
+
dataDic = pickle.load(fp)
|
260 |
+
for hid, data in dataDic.items():
|
261 |
+
proc_features = data['Proc']
|
262 |
+
meds_features = data['Med']
|
263 |
+
out_features = data['Out']
|
264 |
+
cond_features = data['Cond']['fids']
|
265 |
+
eth= data['ethnicity']
|
266 |
+
age = data['age']
|
267 |
+
gender = data['gender']
|
268 |
+
label = data['label']
|
269 |
+
insurance=data['insurance']
|
270 |
+
|
271 |
+
items = list(proc_features.keys())
|
272 |
+
values =[proc_features[i] for i in items ]
|
273 |
+
procs = {"id" : items,
|
274 |
+
"value": values}
|
275 |
+
|
276 |
+
items_outs = list(out_features.keys())
|
277 |
+
values_outs =[out_features[i] for i in items_outs ]
|
278 |
+
outs = {"id" : items_outs,
|
279 |
+
"value": values_outs}
|
280 |
+
|
281 |
+
if self.data_icu:
|
282 |
+
chart_features = data['Chart']
|
283 |
+
else:
|
284 |
+
chart_features = data['Lab']
|
285 |
+
|
286 |
+
#chart signal
|
287 |
+
if ('signal' in chart_features):
|
288 |
+
items_chart_sig = list(chart_features['signal'].keys())
|
289 |
+
values_chart_sig =[chart_features['signal'][i] for i in items_chart_sig ]
|
290 |
+
chart_sig = {"id" : items_chart_sig,
|
291 |
+
"value": values_chart_sig}
|
292 |
+
else:
|
293 |
+
chart_sig = {"id" : [],
|
294 |
+
"value": []}
|
295 |
+
#chart val
|
296 |
+
if ('val' in chart_features):
|
297 |
+
items_chart_val = list(chart_features['val'].keys())
|
298 |
+
values_chart_val =[chart_features['val'][i] for i in items_chart_val ]
|
299 |
+
chart_val = {"id" : items_chart_val,
|
300 |
+
"value": values_chart_val}
|
301 |
+
else:
|
302 |
+
chart_val = {"id" : [],
|
303 |
+
"value": []}
|
304 |
+
|
305 |
+
charts = {"signal" : chart_sig,
|
306 |
+
"val" : chart_val}
|
307 |
+
|
308 |
+
#meds signal
|
309 |
+
if ('signal' in meds_features):
|
310 |
+
items_meds_sig = list(meds_features['signal'].keys())
|
311 |
+
values_meds_sig =[meds_features['signal'][i] for i in items_meds_sig ]
|
312 |
+
meds_sig = {"id" : items_meds_sig,
|
313 |
+
"value": values_meds_sig}
|
314 |
+
else:
|
315 |
+
meds_sig = {"id" : [],
|
316 |
+
"value": []}
|
317 |
+
#meds rate
|
318 |
+
if ('rate' in meds_features):
|
319 |
+
items_meds_rate = list(meds_features['rate'].keys())
|
320 |
+
values_meds_rate =[meds_features['rate'][i] for i in items_meds_rate ]
|
321 |
+
meds_rate = {"id" : items_meds_rate,
|
322 |
+
"value": values_meds_rate}
|
323 |
+
else:
|
324 |
+
meds_rate = {"id" : [],
|
325 |
+
"value": []}
|
326 |
+
#meds amount
|
327 |
+
if ('amount' in meds_features):
|
328 |
+
items_meds_amount = list(meds_features['amount'].keys())
|
329 |
+
values_meds_amount =[meds_features['amount'][i] for i in items_meds_amount ]
|
330 |
+
meds_amount = {"id" : items_meds_amount,
|
331 |
+
"value": values_meds_amount}
|
332 |
+
else:
|
333 |
+
meds_amount = {"id" : [],
|
334 |
+
"value": []}
|
335 |
+
|
336 |
+
meds = {"signal" : meds_sig,
|
337 |
+
"rate" : meds_rate,
|
338 |
+
"amount" : meds_amount}
|
339 |
+
|
340 |
+
|
341 |
+
yield int(hid), {
|
342 |
+
"label" : label,
|
343 |
+
"gender" : gender,
|
344 |
+
"ethnicity" : eth,
|
345 |
+
"insurance" : insurance,
|
346 |
+
"age" : age,
|
347 |
+
"COND" : cond_features,
|
348 |
+
"PROC" : procs,
|
349 |
+
"CHART/LAB" : charts,
|
350 |
+
"OUT" : outs,
|
351 |
+
"MEDS" : meds
|
352 |
+
}
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
###########################################################ENCODED##################################################################
|
357 |
+
|
358 |
+
def _info_encoded(self):
|
359 |
+
features = datasets.Features(
|
360 |
+
{
|
361 |
+
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
362 |
+
"features" : datasets.Sequence(datasets.Value("float32")),
|
363 |
+
}
|
364 |
+
)
|
365 |
+
return datasets.DatasetInfo(
|
366 |
+
description=_DESCRIPTION,
|
367 |
+
features=features,
|
368 |
+
homepage=_HOMEPAGE,
|
369 |
+
citation=_CITATION,
|
370 |
+
)
|
371 |
+
|
372 |
+
def _generate_examples_encoded(self, filepath):
|
373 |
+
path= './data/dict/'+self.config.name.replace(" ","_")+'/ethVocab'
|
374 |
+
with open(path, 'rb') as fp:
|
375 |
+
ethVocab = pickle.load(fp)
|
376 |
+
|
377 |
+
path= './data/dict/'+self.config.name.replace(" ","_")+'/insVocab'
|
378 |
+
with open(path, 'rb') as fp:
|
379 |
+
insVocab = pickle.load(fp)
|
380 |
+
|
381 |
+
genVocab = ['<PAD>', 'M', 'F']
|
382 |
+
gen_encoder = LabelEncoder()
|
383 |
+
eth_encoder = LabelEncoder()
|
384 |
+
ins_encoder = LabelEncoder()
|
385 |
+
gen_encoder.fit(genVocab)
|
386 |
+
eth_encoder.fit(ethVocab)
|
387 |
+
ins_encoder.fit(insVocab)
|
388 |
+
with open(filepath, 'rb') as fp:
|
389 |
+
dico = pickle.load(fp)
|
390 |
+
|
391 |
+
df = pd.DataFrame.from_dict(dico, orient='index')
|
392 |
+
task=self.config.name.replace(" ","_")
|
393 |
+
|
394 |
+
for i, data in df.iterrows():
|
395 |
+
concat_cols=[]
|
396 |
+
dyn_df,cond_df,demo=concat_data(data,task,self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
|
397 |
+
dyn=dyn_df.copy()
|
398 |
+
dyn.columns=dyn.columns.droplevel(0)
|
399 |
+
cols=dyn.columns
|
400 |
+
time=dyn.shape[0]
|
401 |
+
for t in range(time):
|
402 |
+
cols_t = [str(x) + "_"+str(t) for x in cols]
|
403 |
+
concat_cols.extend(cols_t)
|
404 |
+
demo['gender']=gen_encoder.transform(demo['gender'])
|
405 |
+
demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
|
406 |
+
demo['insurance']=ins_encoder.transform(demo['insurance'])
|
407 |
+
label = data['label']
|
408 |
+
demo=demo.drop(['label'],axis=1)
|
409 |
+
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
|
410 |
+
X=X.values.tolist()[0]
|
411 |
+
yield int(i), {
|
412 |
+
"label": label,
|
413 |
+
"features": X,
|
414 |
+
}
|
415 |
+
######################################################DEEP###############################################################
|
416 |
+
def _info_deep(self):
|
417 |
+
features = datasets.Features(
|
418 |
+
{
|
419 |
+
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
420 |
+
"DEMO": datasets.Sequence(datasets.Value("int64")),
|
421 |
+
"COND" : datasets.Sequence(datasets.Value("int64")),
|
422 |
+
"MEDS" : datasets.Array2D(shape=(None, self.size_meds), dtype='int64') ,
|
423 |
+
"PROC" : datasets.Array2D(shape=(None, self.size_proc), dtype='int64') ,
|
424 |
+
"CHART/LAB" : datasets.Array2D(shape=(None, self.size_chart), dtype='int64') ,
|
425 |
+
"OUT" : datasets.Array2D(shape=(None, self.size_out), dtype='int64') ,
|
426 |
+
|
427 |
+
}
|
428 |
+
)
|
429 |
+
return datasets.DatasetInfo(
|
430 |
+
description=_DESCRIPTION,
|
431 |
+
features=features,
|
432 |
+
homepage=_HOMEPAGE,
|
433 |
+
citation=_CITATION,
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
def _generate_examples_deep(self, filepath):
|
438 |
+
with open(filepath, 'rb') as fp:
|
439 |
+
dico = pickle.load(fp)
|
440 |
+
task=self.config.name.replace(" ","_")
|
441 |
+
for key, data in dico.items():
|
442 |
+
stat, demo, meds, chart, out, proc, lab, y = generate_deep(data, task, self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
|
443 |
+
|
444 |
+
verri=True
|
445 |
+
if self.feat_proc:
|
446 |
+
if (len(proc)<(self.timeW//self.bucket)):
|
447 |
+
verri=False
|
448 |
+
if self.feat_out:
|
449 |
+
if (len(out)<(self.timeW//self.bucket)):
|
450 |
+
verri=False
|
451 |
+
if self.feat_chart:
|
452 |
+
if (len(chart)<(self.timeW//self.bucket)):
|
453 |
+
verri=False
|
454 |
+
if self.feat_meds:
|
455 |
+
if (len(meds)<(self.timeW//self.bucket)):
|
456 |
+
verri=False
|
457 |
+
if self.feat_lab:
|
458 |
+
if (len(lab)<(self.timeW//self.bucket)):
|
459 |
+
verri=False
|
460 |
+
if verri:
|
461 |
+
if self.data_icu:
|
462 |
+
yield int(key), {
|
463 |
+
'label': y,
|
464 |
+
'DEMO': demo,
|
465 |
+
'COND': stat,
|
466 |
+
'MEDS': meds,
|
467 |
+
'PROC': proc,
|
468 |
+
'CHART/LAB': chart,
|
469 |
+
'OUT': out,
|
470 |
+
}
|
471 |
+
else:
|
472 |
+
yield int(key), {
|
473 |
+
'label': y,
|
474 |
+
'DEMO': demo,
|
475 |
+
'COND': stat,
|
476 |
+
'MEDS': meds,
|
477 |
+
'PROC': proc,
|
478 |
+
'CHART/LAB': lab,
|
479 |
+
'OUT': out,
|
480 |
+
}
|
481 |
+
else:
|
482 |
+
continue
|
483 |
+
|
484 |
+
|
485 |
+
#############################################################################################################################
|
486 |
+
def _info(self):
|
487 |
+
self.path = self.create_cohort()
|
488 |
+
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
|
489 |
+
|
490 |
+
if self.encoding == 'concat' :
|
491 |
+
return self._info_encoded()
|
492 |
+
|
493 |
+
elif self.encoding == 'aggreg' :
|
494 |
+
return self._info_encoded()
|
495 |
+
|
496 |
+
elif self.encoding == 'tensor' :
|
497 |
+
return self._info_deep()
|
498 |
+
|
499 |
+
else:
|
500 |
+
return self._info_raw()
|
501 |
+
|
502 |
+
|
503 |
+
def _split_generators(self, dl_manager):
|
504 |
+
csv_dir = "./data/dict/"+self.config.name.replace(" ","_")
|
505 |
+
if self.val_size > 0 :
|
506 |
+
return [
|
507 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": csv_dir+'/train_data.pkl'}),
|
508 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": csv_dir+'/val_data.pkl'}),
|
509 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": csv_dir+'/test_data.pkl'}),
|
510 |
+
]
|
511 |
+
else :
|
512 |
+
return [
|
513 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": csv_dir+'/train_data.pkl'}),
|
514 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": csv_dir+'/test_data.pkl'}),
|
515 |
+
]
|
516 |
+
|
517 |
+
def _generate_examples(self, filepath):
|
518 |
+
|
519 |
+
if self.encoding == 'concat' :
|
520 |
+
yield from self._generate_examples_encoded(filepath)
|
521 |
+
|
522 |
+
elif self.encoding == 'aggreg' :
|
523 |
+
yield from self._generate_examples_encoded(filepath)
|
524 |
+
|
525 |
+
elif self.encoding == 'tensor' :
|
526 |
+
yield from self._generate_examples_deep(filepath)
|
527 |
+
else :
|
528 |
+
yield from self._generate_examples_raw(filepath)
|
check_config.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
def check_config(task,config_file):
|
3 |
+
with open(config_file) as f:
|
4 |
+
config = yaml.safe_load(f)
|
5 |
+
|
6 |
+
if task=='Phenotype':
|
7 |
+
disease_label = config['disease_label']
|
8 |
+
else :
|
9 |
+
disease_label = ""
|
10 |
+
time = config['timePrediction']
|
11 |
+
label = task
|
12 |
+
timeW = config['timeWindow']
|
13 |
+
include=int(timeW.split()[1])
|
14 |
+
bucket = config['timebucket']
|
15 |
+
radimp = config['radimp']
|
16 |
+
predW = config['predW']
|
17 |
+
disease_filter = config['disease_filter']
|
18 |
+
icu_no_icu = config['icu_no_icu']
|
19 |
+
groupingDiag = config['groupingDiag']
|
20 |
+
|
21 |
+
assert( icu_no_icu in ['ICU','Non-ICU' ], "Chossen data should be one of the following: ICU, Non-ICU")
|
22 |
+
data_icu = icu_no_icu=='ICU'
|
23 |
+
|
24 |
+
if data_icu:
|
25 |
+
chart_flag = config['chart']
|
26 |
+
output_flag = config['output']
|
27 |
+
select_chart = config['select_chart']
|
28 |
+
lab_flag = False
|
29 |
+
select_lab = False
|
30 |
+
else:
|
31 |
+
lab_flag =config['lab']
|
32 |
+
select_lab = config['select_lab']
|
33 |
+
groupingMed = config['groupingMed']
|
34 |
+
groupingProc = config['groupingProc']
|
35 |
+
chart_flag = False
|
36 |
+
output_flag = False
|
37 |
+
select_chart = False
|
38 |
+
|
39 |
+
|
40 |
+
diag_flag= config['diagnosis']
|
41 |
+
proc_flag = config['proc']
|
42 |
+
meds_flag = config['meds']
|
43 |
+
select_diag= config['select_diag']
|
44 |
+
select_med= config['select_med']
|
45 |
+
select_proc= config['select_proc']
|
46 |
+
select_out = config['select_out']
|
47 |
+
|
48 |
+
outlier_removal=config['outlier_removal']
|
49 |
+
thresh=config['outlier']
|
50 |
+
left_thresh=config['left_outlier']
|
51 |
+
|
52 |
+
if data_icu:
|
53 |
+
assert (isinstance(select_diag,bool) and isinstance(select_med,bool) and isinstance(select_proc,bool) and isinstance(select_out,bool) and isinstance(select_chart,bool), " select_diag, select_chart, select_med, select_proc, select_out should be boolean")
|
54 |
+
assert (isinstance(chart_flag,bool) and isinstance(output_flag,bool) and isinstance(diag_flag,bool) and isinstance(proc_flag,bool) and isinstance(meds_flag,bool), "chart_flag, output_flag, diag_flag, proc_flag, meds_flag should be boolean")
|
55 |
+
|
56 |
+
else:
|
57 |
+
assert (isinstance(select_diag,bool) and isinstance(select_med,bool) and isinstance(select_proc,bool) and isinstance(select_out,bool) and isinstance(select_lab,bool), " select_diag, select_lab, select_med, select_proc, select_out should be boolean")
|
58 |
+
assert (isinstance(lab_flag,bool) and isinstance(diag_flag,bool) and isinstance(proc_flag,bool) and isinstance(meds_flag,bool), "lab_flag, diag_flag, proc_flag, meds_flag should be boolean")
|
59 |
+
|
60 |
+
if task=='Phenotype':
|
61 |
+
if disease_label=='Heart Failure':
|
62 |
+
label='Readmission'
|
63 |
+
time=30
|
64 |
+
disease_label='I50'
|
65 |
+
elif disease_label=='CAD':
|
66 |
+
label='Readmission'
|
67 |
+
time=30
|
68 |
+
disease_label='I25'
|
69 |
+
elif disease_label=='CKD':
|
70 |
+
label='Readmission'
|
71 |
+
time=30
|
72 |
+
disease_label='N18'
|
73 |
+
elif disease_label=='COPD':
|
74 |
+
label='Readmission'
|
75 |
+
time=30
|
76 |
+
disease_label='J44'
|
77 |
+
else :
|
78 |
+
raise ValueError('Disease label not correct provide one in the list: Heart Failure, CAD, CKD, COPD')
|
79 |
+
predW=0
|
80 |
+
assert (timeW[0]=='Last' and include<=72 and include>=24, "Time window should be between Last 24 and Last 72")
|
81 |
+
|
82 |
+
elif task=='Mortality':
|
83 |
+
time=0
|
84 |
+
label= 'Mortality'
|
85 |
+
assert (predW<=8 and predW>=2, "Prediction window should be between 2 and 8")
|
86 |
+
assert (timeW[0]=='Fisrt' and include<=72 and include>=24, "Time window should be between First 24 and First 72")
|
87 |
+
|
88 |
+
elif task=='Length_of_Stay':
|
89 |
+
label= 'Length of Stay'
|
90 |
+
assert (timeW[0]=='Fisrt' and include<=72 and include>=24, "Time window should be between Fisrt 24 and Fisrt 72")
|
91 |
+
assert (time<=10 and time>=1, "Length of stay should be between 1 and 10")
|
92 |
+
predW=0
|
93 |
+
|
94 |
+
elif task=='Readmission':
|
95 |
+
label= 'Readmission'
|
96 |
+
assert (timeW[0]=='Last' and include<=72 and include>=24, "Time window should be between Last 24 and Last 72")
|
97 |
+
assert (time<=150 and time>=10 and time%10==0, "Readmission window should be between 10 and 150 with a step of 10")
|
98 |
+
predW=0
|
99 |
+
|
100 |
+
else:
|
101 |
+
raise ValueError('Task not correct')
|
102 |
+
|
103 |
+
assert( disease_filter in ['Heart Failure','COPD','CKD','CAD',""], "Disease filter should be one of the following: Heart Failure, COPD, CKD, CAD or empty")
|
104 |
+
assert( groupingDiag in ['Convert ICD-9 to ICD-10 and group ICD-10 codes','Keep both ICD-9 and ICD-10 codes','Convert ICD-9 to ICD-10 codes'], "Grouping ICD should be one of the following: Convert ICD-9 to ICD-10 and group ICD-10 codes, Keep both ICD-9 and ICD-10 codes, Convert ICD-9 to ICD-10 codes")
|
105 |
+
assert (bucket<=6 and bucket>=1 and isinstance(bucket, int), "Time bucket should be between 1 and 6 and an integer")
|
106 |
+
assert (radimp in ['No Imputation', 'forward fill and mean','forward fill and median'], "imputation should be one of the following: No Imputation, forward fill and mean, forward fill and median")
|
107 |
+
if chart_flag:
|
108 |
+
assert (left_thresh>=0 and left_thresh<=10 and isinstance(left_thresh, int), "Left outlier threshold should be between 0 and 10 and an integer")
|
109 |
+
assert (thresh>=90 and thresh<=99 and isinstance(thresh, int), "Outlier threshold should be between 90 and 99 and an integer")
|
110 |
+
assert (outlier_removal in ['No outlier detection','Impute Outlier (default:98)','Remove outliers (default:98)'], "Outlier removal should be one of the following: No outlier detection, Impute Outlier (default:98), Remove outliers (default:98)")
|
111 |
+
if lab_flag:
|
112 |
+
assert (left_thresh>=0 and left_thresh<=10 and isinstance(left_thresh, int), "Left outlier threshold should be between 0 and 10 and an integer")
|
113 |
+
assert (thresh>=90 and thresh<=99 and isinstance(thresh, int), "Outlier threshold should be between 90 and 99 and an integer")
|
114 |
+
assert (outlier_removal in ['No outlier detection','Impute Outlier (default:98)','Remove outliers (default:98)'], "Outlier removal should be one of the following: No outlier detection, Impute Outlier (default:98), Remove outliers (default:98)")
|
115 |
+
assert (groupingProc in ['ICD-9 and ICD-10','ICD-10'], "Grouping procedure should be one of the following: ICD-9 and ICD-10, ICD-10")
|
116 |
+
assert (groupingMed in ['Yes','No'], "Do you want to group Medication codes to use Non propietary names? : Grouping medication should be one of the following: Yes, No")
|
117 |
+
|
118 |
+
return label, time, disease_label, predW
|
dataset_utils.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def create_vocab(file,task):
|
8 |
+
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
9 |
+
condVocab = pickle.load(fp)
|
10 |
+
condVocabDict={}
|
11 |
+
condVocabDict[0]=0
|
12 |
+
for val in range(len(condVocab)):
|
13 |
+
condVocabDict[condVocab[val]]= val+1
|
14 |
+
|
15 |
+
return condVocabDict
|
16 |
+
|
17 |
+
def gender_vocab():
|
18 |
+
genderVocabDict={}
|
19 |
+
genderVocabDict['<PAD>']=0
|
20 |
+
genderVocabDict['M']=1
|
21 |
+
genderVocabDict['F']=2
|
22 |
+
|
23 |
+
return genderVocabDict
|
24 |
+
|
25 |
+
def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
|
26 |
+
condVocabDict={}
|
27 |
+
procVocabDict={}
|
28 |
+
medVocabDict={}
|
29 |
+
outVocabDict={}
|
30 |
+
chartVocabDict={}
|
31 |
+
labVocabDict={}
|
32 |
+
ethVocabDict={}
|
33 |
+
ageVocabDict={}
|
34 |
+
genderVocabDict={}
|
35 |
+
insVocabDict={}
|
36 |
+
|
37 |
+
ethVocabDict=create_vocab('ethVocab',task)
|
38 |
+
with open('./data/dict/'+task+'/ethVocabDict', 'wb') as fp:
|
39 |
+
pickle.dump(ethVocabDict, fp)
|
40 |
+
|
41 |
+
ageVocabDict=create_vocab('ageVocab',task)
|
42 |
+
with open('./data/dict/'+task+'/ageVocabDict', 'wb') as fp:
|
43 |
+
pickle.dump(ageVocabDict, fp)
|
44 |
+
|
45 |
+
genderVocabDict=gender_vocab()
|
46 |
+
with open('./data/dict/'+task+'/genderVocabDict', 'wb') as fp:
|
47 |
+
pickle.dump(genderVocabDict, fp)
|
48 |
+
|
49 |
+
insVocabDict=create_vocab('insVocab',task)
|
50 |
+
with open('./data/dict/'+task+'/insVocabDict', 'wb') as fp:
|
51 |
+
pickle.dump(insVocabDict, fp)
|
52 |
+
|
53 |
+
if diag_flag:
|
54 |
+
file='condVocab'
|
55 |
+
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
56 |
+
condVocabDict = pickle.load(fp)
|
57 |
+
if proc_flag:
|
58 |
+
file='procVocab'
|
59 |
+
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
60 |
+
procVocabDict = pickle.load(fp)
|
61 |
+
if med_flag:
|
62 |
+
file='medVocab'
|
63 |
+
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
64 |
+
medVocabDict = pickle.load(fp)
|
65 |
+
if out_flag:
|
66 |
+
file='outVocab'
|
67 |
+
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
68 |
+
outVocabDict = pickle.load(fp)
|
69 |
+
if chart_flag:
|
70 |
+
file='chartVocab'
|
71 |
+
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
72 |
+
chartVocabDict = pickle.load(fp)
|
73 |
+
if lab_flag:
|
74 |
+
file='labsVocab'
|
75 |
+
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
76 |
+
labVocabDict = pickle.load(fp)
|
77 |
+
|
78 |
+
return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
79 |
+
|
80 |
+
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
|
81 |
+
meds=data['Med']
|
82 |
+
proc = data['Proc']
|
83 |
+
out = data['Out']
|
84 |
+
chart = data['Chart']
|
85 |
+
cond= data['Cond']['fids']
|
86 |
+
|
87 |
+
cond_df=pd.DataFrame()
|
88 |
+
proc_df=pd.DataFrame()
|
89 |
+
out_df=pd.DataFrame()
|
90 |
+
chart_df=pd.DataFrame()
|
91 |
+
meds_df=pd.DataFrame()
|
92 |
+
|
93 |
+
#demographic
|
94 |
+
demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
|
95 |
+
new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
|
96 |
+
demo = demo.append(new_row, ignore_index=True)
|
97 |
+
|
98 |
+
##########COND#########
|
99 |
+
if (feat_cond):
|
100 |
+
#get all conds
|
101 |
+
with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
|
102 |
+
conDict = pickle.load(fp)
|
103 |
+
conds=pd.DataFrame(conDict,columns=['COND'])
|
104 |
+
features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])
|
105 |
+
|
106 |
+
#onehot encode
|
107 |
+
if(cond ==[]):
|
108 |
+
cond_df=pd.DataFrame(np.zeros([1,len(features)]),columns=features['COND'])
|
109 |
+
cond_df=cond_df.fillna(0)
|
110 |
+
else:
|
111 |
+
cond_df=pd.DataFrame(cond,columns=['COND'])
|
112 |
+
cond_df['val']=1
|
113 |
+
cond_df=(cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True)
|
114 |
+
cond_df=cond_df.fillna(0)
|
115 |
+
oneh = cond_df.sum().to_frame().T
|
116 |
+
combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0)
|
117 |
+
combined_oneh=combined_df.sum().to_frame().T
|
118 |
+
cond_df=combined_oneh
|
119 |
+
|
120 |
+
##########PROC#########
|
121 |
+
if (feat_proc):
|
122 |
+
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
|
123 |
+
procDic = pickle.load(fp)
|
124 |
+
|
125 |
+
if proc :
|
126 |
+
feat=proc.keys()
|
127 |
+
proc_val=[proc[key] for key in feat]
|
128 |
+
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
129 |
+
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
130 |
+
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
131 |
+
procs=pd.DataFrame(columns=feat)
|
132 |
+
for p,v in zip(feat,proc_val):
|
133 |
+
procs[p]=v
|
134 |
+
procs.columns=pd.MultiIndex.from_product([["PROC"], procs.columns])
|
135 |
+
proc_df = pd.concat([features,procs],ignore_index=True).fillna(0)
|
136 |
+
else:
|
137 |
+
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
138 |
+
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
139 |
+
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
140 |
+
proc_df=features.fillna(0)
|
141 |
+
|
142 |
+
##########OUT#########
|
143 |
+
if (feat_out):
|
144 |
+
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
|
145 |
+
outDic = pickle.load(fp)
|
146 |
+
|
147 |
+
if out :
|
148 |
+
feat=out.keys()
|
149 |
+
out_val=[out[key] for key in feat]
|
150 |
+
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
151 |
+
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
152 |
+
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
153 |
+
outs=pd.DataFrame(columns=feat)
|
154 |
+
for o,v in zip(feat,out_val):
|
155 |
+
outs[o]=v
|
156 |
+
outs.columns=pd.MultiIndex.from_product([["OUT"], outs.columns])
|
157 |
+
out_df = pd.concat([features,outs],ignore_index=True).fillna(0)
|
158 |
+
else:
|
159 |
+
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
160 |
+
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
161 |
+
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
162 |
+
out_df=features.fillna(0)
|
163 |
+
|
164 |
+
##########CHART#########
|
165 |
+
if (feat_chart):
|
166 |
+
with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
|
167 |
+
chartDic = pickle.load(fp)
|
168 |
+
|
169 |
+
if chart:
|
170 |
+
charts=chart['val']
|
171 |
+
feat=charts.keys()
|
172 |
+
chart_val=[charts[key] for key in feat]
|
173 |
+
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
174 |
+
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
175 |
+
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
176 |
+
|
177 |
+
chart=pd.DataFrame(columns=feat)
|
178 |
+
for c,v in zip(feat,chart_val):
|
179 |
+
chart[c]=v
|
180 |
+
chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns])
|
181 |
+
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
|
182 |
+
else:
|
183 |
+
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
184 |
+
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
185 |
+
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
186 |
+
chart_df=features.fillna(0)
|
187 |
+
|
188 |
+
##########LAB#########
|
189 |
+
if (feat_lab):
|
190 |
+
with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
|
191 |
+
chartDic = pickle.load(fp)
|
192 |
+
|
193 |
+
if chart:
|
194 |
+
charts=chart['val']
|
195 |
+
feat=charts.keys()
|
196 |
+
chart_val=[charts[key] for key in feat]
|
197 |
+
charts=pd.DataFrame(chartDic,columns=['LAB'])
|
198 |
+
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
199 |
+
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
200 |
+
|
201 |
+
chart=pd.DataFrame(columns=feat)
|
202 |
+
for c,v in zip(feat,chart_val):
|
203 |
+
chart[c]=v
|
204 |
+
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
|
205 |
+
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
|
206 |
+
else:
|
207 |
+
charts=pd.DataFrame(chartDic,columns=['LAB'])
|
208 |
+
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
209 |
+
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
|
210 |
+
chart_df=features.fillna(0)
|
211 |
+
|
212 |
+
###MEDS
|
213 |
+
if (feat_meds):
|
214 |
+
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
|
215 |
+
medDic = pickle.load(fp)
|
216 |
+
|
217 |
+
if meds:
|
218 |
+
feat=meds['signal'].keys()
|
219 |
+
med_val=[meds['amount'][key] for key in feat]
|
220 |
+
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
221 |
+
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
222 |
+
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
223 |
+
|
224 |
+
med=pd.DataFrame(columns=feat)
|
225 |
+
for m,v in zip(feat,med_val):
|
226 |
+
med[m]=v
|
227 |
+
med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns])
|
228 |
+
meds_df = pd.concat([features,med],ignore_index=True).fillna(0)
|
229 |
+
else:
|
230 |
+
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
231 |
+
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
232 |
+
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
233 |
+
meds_df=features.fillna(0)
|
234 |
+
|
235 |
+
dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
|
236 |
+
return dyn_df,cond_df,demo
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
|
241 |
+
stat_df = torch.zeros(size=(1,0))
|
242 |
+
demo_df = torch.zeros(size=(1,0))
|
243 |
+
meds = torch.zeros(size=(0,0))
|
244 |
+
charts = torch.zeros(size=(0,0))
|
245 |
+
proc = torch.zeros(size=(0,0))
|
246 |
+
out = torch.zeros(size=(0,0))
|
247 |
+
lab = torch.zeros(size=(0,0))
|
248 |
+
stat_df = torch.zeros(size=(1,0))
|
249 |
+
demo_df = torch.zeros(size=(1,0))
|
250 |
+
|
251 |
+
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
252 |
+
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab)
|
253 |
+
if feat_chart:
|
254 |
+
charts = dyn['CHART']
|
255 |
+
charts=charts.to_numpy()
|
256 |
+
charts = torch.tensor(charts, dtype=torch.long)
|
257 |
+
charts = charts.tolist()
|
258 |
+
|
259 |
+
if feat_meds:
|
260 |
+
meds = dyn['MEDS']
|
261 |
+
meds=meds.to_numpy()
|
262 |
+
meds = torch.tensor(meds, dtype=torch.long)
|
263 |
+
meds = meds.tolist()
|
264 |
+
|
265 |
+
if feat_proc:
|
266 |
+
proc = dyn['PROC']
|
267 |
+
proc=proc.to_numpy()
|
268 |
+
proc = torch.tensor(proc, dtype=torch.long)
|
269 |
+
proc = proc.tolist()
|
270 |
+
|
271 |
+
if feat_out:
|
272 |
+
out = dyn['OUT']
|
273 |
+
out=out.to_numpy()
|
274 |
+
out = torch.tensor(out, dtype=torch.long)
|
275 |
+
out = out.tolist()
|
276 |
+
|
277 |
+
if feat_lab:
|
278 |
+
lab = dyn['LAB']
|
279 |
+
lab=lab.to_numpy()
|
280 |
+
lab = torch.tensor(lab, dtype=torch.long)
|
281 |
+
lab = lab.tolist()
|
282 |
+
|
283 |
+
stat=cond_df
|
284 |
+
stat = stat.to_numpy()
|
285 |
+
stat = torch.tensor(stat)
|
286 |
+
if stat_df[0].nelement():
|
287 |
+
stat_df = torch.cat((stat_df,stat),0)
|
288 |
+
else:
|
289 |
+
stat_df = stat
|
290 |
+
|
291 |
+
y = int(demo['label'])
|
292 |
+
demo["gender"].replace(gender_vocab, inplace=True)
|
293 |
+
demo["ethnicity"].replace(eth_vocab, inplace=True)
|
294 |
+
demo["insurance"].replace(ins_vocab, inplace=True)
|
295 |
+
demo["Age"].replace(age_vocab, inplace=True)
|
296 |
+
demo=demo[["gender","ethnicity","insurance","Age"]]
|
297 |
+
demo = demo.values
|
298 |
+
demo = torch.tensor(demo)
|
299 |
+
if demo_df[0].nelement():
|
300 |
+
demo_df = torch.cat((demo_df,demo),0)
|
301 |
+
else:
|
302 |
+
demo_df = demo
|
303 |
+
stat_df = torch.tensor(stat_df)
|
304 |
+
stat_df = stat_df.type(torch.LongTensor)
|
305 |
+
stat_df = stat_df.squeeze()
|
306 |
+
demo_df = torch.tensor(demo_df)
|
307 |
+
demo_df = demo_df.type(torch.LongTensor)
|
308 |
+
demo_df=demo_df.squeeze()
|
309 |
+
y_df = torch.tensor(y)
|
310 |
+
y_df = y_df.type(torch.LongTensor)
|
311 |
+
|
312 |
+
return stat_df, demo_df, meds, charts, out, proc, lab, y
|
313 |
+
|
314 |
+
|
315 |
+
def generate_ml(dyn,stat,demo,concat_cols,concat):
|
316 |
+
X_df=pd.DataFrame()
|
317 |
+
if concat:
|
318 |
+
dyna=dyn.copy()
|
319 |
+
dyna.columns=dyna.columns.droplevel(0)
|
320 |
+
dyna=dyna.to_numpy()
|
321 |
+
dyna=np.nan_to_num(dyna, copy=False)
|
322 |
+
dyna=dyna.reshape(1,-1)
|
323 |
+
dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
|
324 |
+
else:
|
325 |
+
dyn_df=pd.DataFrame()
|
326 |
+
for key in dyn.columns.levels[0]:
|
327 |
+
dyn_temp=dyn[key]
|
328 |
+
if ((key=="CHART") or (key=="MEDS")):
|
329 |
+
agg=dyn_temp.aggregate("mean")
|
330 |
+
agg=agg.reset_index()
|
331 |
+
else:
|
332 |
+
agg=dyn_temp.aggregate("max")
|
333 |
+
agg=agg.reset_index()
|
334 |
+
|
335 |
+
if dyn_df.empty:
|
336 |
+
dyn_df=agg
|
337 |
+
else:
|
338 |
+
dyn_df=pd.concat([dyn_df,agg],axis=0)
|
339 |
+
dyn_df=dyn_df.T
|
340 |
+
dyn_df.columns = dyn_df.iloc[0]
|
341 |
+
dyn_df=dyn_df.iloc[1:,:]
|
342 |
+
|
343 |
+
X_df=pd.concat([dyn_df,stat],axis=1)
|
344 |
+
X_df=pd.concat([X_df,demo],axis=1)
|
345 |
+
return X_df
|
task_cohort.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import yaml
|
4 |
+
import time
|
5 |
+
from .check_config import check_config
|
6 |
+
from .day_intervals_cohort_v22 import *
|
7 |
+
from .data_generation_icu_modify import *
|
8 |
+
from .data_generation_modify import *
|
9 |
+
|
10 |
+
def task_cohort(task, mimic_path, config_path):
|
11 |
+
sys.path.append('./preprocessing/day_intervals_preproc')
|
12 |
+
sys.path.append('./utils')
|
13 |
+
sys.path.append('./preprocessing/hosp_module_preproc')
|
14 |
+
sys.path.append('./model')
|
15 |
+
import day_intervals_cohort
|
16 |
+
import feature_selection_icu
|
17 |
+
import feature_selection_hosp
|
18 |
+
|
19 |
+
|
20 |
+
root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
|
21 |
+
config_path='./config/'+config_path
|
22 |
+
with open(config_path) as f:
|
23 |
+
config = yaml.safe_load(f)
|
24 |
+
version_path = mimic_path+'/'
|
25 |
+
print(version_path)
|
26 |
+
version = mimic_path.split('/')[-1][0]
|
27 |
+
start = time.time()
|
28 |
+
#----------------------------------------------config----------------------------------------------------
|
29 |
+
label, tim, disease_label, predW = check_config(task,config_path)
|
30 |
+
icu_no_icu = config['icu_no_icu']
|
31 |
+
timeW = config['timeWindow']
|
32 |
+
include=int(timeW.split()[1])
|
33 |
+
bucket = config['timebucket']
|
34 |
+
radimp = config['radimp']
|
35 |
+
|
36 |
+
diag_flag = config['diagnosis']
|
37 |
+
proc_flag= config['proc']
|
38 |
+
med_flag = config['meds']
|
39 |
+
disease_filter = config['disease_filter']
|
40 |
+
groupingDiag = config['groupingDiag']
|
41 |
+
select_diag= config['select_diag']
|
42 |
+
select_med= config['select_med']
|
43 |
+
select_proc= config['select_proc']
|
44 |
+
|
45 |
+
if icu_no_icu=='ICU':
|
46 |
+
out_flag = config['output']
|
47 |
+
chart_flag = config['chart']
|
48 |
+
select_out= config['select_out']
|
49 |
+
select_chart= config['select_chart']
|
50 |
+
lab_flag = False
|
51 |
+
select_lab = False
|
52 |
+
else:
|
53 |
+
lab_flag = config['lab']
|
54 |
+
groupingMed = config['groupingMed']
|
55 |
+
groupingProc = config['groupingProc']
|
56 |
+
select_lab= config['select_lab']
|
57 |
+
out_flag = False
|
58 |
+
chart_flag = False
|
59 |
+
select_out= False
|
60 |
+
select_chart= False
|
61 |
+
|
62 |
+
# -------------------------------------------------------------------------------------------------------------
|
63 |
+
|
64 |
+
data_icu=icu_no_icu=="ICU"
|
65 |
+
data_mort=label=="Mortality"
|
66 |
+
data_admn=label=='Readmission'
|
67 |
+
data_los=label=='Length of Stay'
|
68 |
+
|
69 |
+
if (disease_filter=="Heart Failure"):
|
70 |
+
icd_code='I50'
|
71 |
+
elif (disease_filter=="CKD"):
|
72 |
+
icd_code='N18'
|
73 |
+
elif (disease_filter=="COPD"):
|
74 |
+
icd_code='J44'
|
75 |
+
elif (disease_filter=="CAD"):
|
76 |
+
icd_code='I25'
|
77 |
+
else:
|
78 |
+
icd_code='No Disease Filter'
|
79 |
+
|
80 |
+
#-----------------------------------------------EXTRACT MIMIC-----------------------------------------------------
|
81 |
+
if version == '2':
|
82 |
+
cohort_output = extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
|
83 |
+
|
84 |
+
elif version == '1':
|
85 |
+
cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
|
86 |
+
#----------------------------------------------FEATURES-------------------------------------------------------
|
87 |
+
|
88 |
+
if data_icu :
|
89 |
+
feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
|
90 |
+
else:
|
91 |
+
feature_selection_hosp.feature_nonicu(cohort_output, version_path,diag_flag,lab_flag,proc_flag,med_flag)
|
92 |
+
#----------------------------------------------GROUPING-------------------------------------------------------
|
93 |
+
if data_icu:
|
94 |
+
if diag_flag:
|
95 |
+
group_diag=groupingDiag
|
96 |
+
feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
|
97 |
+
|
98 |
+
else:
|
99 |
+
if diag_flag:
|
100 |
+
group_diag=groupingDiag
|
101 |
+
if med_flag:
|
102 |
+
group_med=groupingMed
|
103 |
+
if proc_flag:
|
104 |
+
group_proc=groupingProc
|
105 |
+
feature_selection_hosp.preprocess_features_hosp(cohort_output, diag_flag,proc_flag,med_flag,False,group_diag,group_med,group_proc,False,False,0,0)
|
106 |
+
#----------------------------------------------SUMMARY-------------------------------------------------------
|
107 |
+
if data_icu:
|
108 |
+
feature_selection_icu.generate_summary_icu(diag_flag,proc_flag,med_flag,out_flag,chart_flag)
|
109 |
+
else:
|
110 |
+
feature_selection_hosp.generate_summary_hosp(diag_flag,proc_flag,med_flag,lab_flag)
|
111 |
+
#----------------------------------------------FEATURE SELECTION---------------------------------------------
|
112 |
+
|
113 |
+
#----------------------------------------------FEATURE SELECTION---------------------------------------------
|
114 |
+
|
115 |
+
if data_icu:
|
116 |
+
if select_chart or select_out or select_diag or select_med or select_proc:
|
117 |
+
if select_chart:
|
118 |
+
input('Please edit list of codes in ./data/summary/chart_features.csv to select the chart items to keep and press enter to continue')
|
119 |
+
if select_out:
|
120 |
+
input('Please edit list of codes in ./data/summary/out_features.csv to select the output items to keep and press enter to continue')
|
121 |
+
if select_diag:
|
122 |
+
input('Please edit list of codes in ./data/summary/diag_features.csv to select the diagnosis ids to keep and press enter to continue')
|
123 |
+
if select_med:
|
124 |
+
input('Please edit list of codes in ./data/summary/med_features.csv to select the meds items to keep and press enter to continue')
|
125 |
+
if select_proc:
|
126 |
+
input('Please edit list of codes in ./data/summary/proc_features.csv to select the procedures ids to keep and press enter to continue')
|
127 |
+
feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
|
128 |
+
else:
|
129 |
+
if select_diag or select_med or select_proc or select_lab:
|
130 |
+
if select_diag:
|
131 |
+
input('Please edit list of codes in ./data/summary/diag_features.csv to select the diagnosis ids to keep and press enter to continue')
|
132 |
+
if select_med:
|
133 |
+
input('Please edit list of codes in ./data/summary/med_features.csv to select the meds items to keep and press enter to continue')
|
134 |
+
if select_proc:
|
135 |
+
input('Please edit list of codes in ./data/summary/proc_features.csv to select the procedures ids to keep and press enter to continue')
|
136 |
+
if select_lab:
|
137 |
+
input('Please edit list of codes in ./data/summary/labs_features.csv to select the labs items to keep and press enter to continue')
|
138 |
+
feature_selection_hosp.features_selection_hosp(cohort_output, diag_flag,proc_flag,med_flag,lab_flag,select_diag,select_med,select_proc,select_lab)
|
139 |
+
|
140 |
+
#---------------------------------------CLEANING OF FEATURES-----------------------------------------------
|
141 |
+
thresh=0
|
142 |
+
if data_icu:
|
143 |
+
if chart_flag:
|
144 |
+
outlier_removal=config['outlier_removal']
|
145 |
+
clean_chart=outlier_removal!='No outlier detection'
|
146 |
+
impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
|
147 |
+
thresh=config['outlier']
|
148 |
+
left_thresh=config['left_outlier']
|
149 |
+
feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
|
150 |
+
else:
|
151 |
+
if lab_flag:
|
152 |
+
outlier_removal=config['outlier_removal']
|
153 |
+
clean_chart=outlier_removal!='No outlier detection'
|
154 |
+
impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
|
155 |
+
thresh=config['outlier']
|
156 |
+
left_thresh=config['left_outlier']
|
157 |
+
feature_selection_hosp.preprocess_features_hosp(cohort_output, False,False, False,lab_flag,False,False,False,clean_chart,impute_outlier_chart,thresh,left_thresh)
|
158 |
+
# ---------------------------------------tim-Series Representation--------------------------------------------
|
159 |
+
if radimp == 'forward fill and mean' :
|
160 |
+
impute='Mean'
|
161 |
+
elif radimp =='forward fill and median':
|
162 |
+
impute = 'Median'
|
163 |
+
else :
|
164 |
+
impute = False
|
165 |
+
|
166 |
+
if data_icu:
|
167 |
+
gen=Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
|
168 |
+
else:
|
169 |
+
gen=Generator(cohort_output,data_mort,data_admn,data_los,diag_flag,lab_flag,proc_flag,med_flag,impute,include,bucket,predW)
|
170 |
+
|
171 |
+
end = time.time()
|
172 |
+
print("Time elapsed : ", round((end - start)/60,2),"mins")
|
173 |
+
print("[============TASK COHORT SUCCESSFULLY CREATED============]")
|