thbndi commited on
Commit
d4733d8
·
1 Parent(s): 146de49

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +12 -7
Mimic4Dataset.py CHANGED
@@ -254,6 +254,8 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
254
  for key in range(len(keys)):
255
  dyn_temp=dyn_df[keys[key]]
256
  dyn_temp=dyn_temp.to_numpy()
 
 
257
  dyn[key]=dyn_temp
258
 
259
  for k in range(len(keys)):
@@ -269,7 +271,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
269
  lab=dyn[k]
270
 
271
  stat=cond_df
272
- stat=stat.to_numpy()
273
 
274
  y = demo['label']
275
 
@@ -289,6 +291,8 @@ def getXY(dyn,stat,demo,concat_cols,concat):
289
  dyna=dyn.copy()
290
  dyna.columns=dyna.columns.droplevel(0)
291
  dyna=dyna.to_numpy()
 
 
292
  dyna=dyna.reshape(1,-1)
293
  dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
294
  else:
@@ -361,11 +365,6 @@ def generate_split_deep(path,task,feat_cond,feat_chart,feat_proc, feat_meds, fea
361
  taskf=task.replace(" ","_")
362
  for hid, data in tqdm(X.iterrows(),desc='Encoding Splits Data for '+task+' task'):
363
  stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, taskf, feat_cond, feat_proc, feat_out, feat_chart,feat_meds)
364
- meds=np.nan_to_num(meds, copy=False)
365
- chart=np.nan_to_num(chart, copy=False)
366
- out=np.nan_to_num(out, copy=False)
367
- proc=np.nan_to_num(proc, copy=False)
368
- lab=np.nan_to_num(lab, copy=False)
369
  X_dict[hid] = {'stat': stat, 'demo': demo, 'meds': meds, 'chart': chart, 'out': out, 'proc': proc, 'lab': lab, 'y': y}
370
 
371
  return X_dict
@@ -750,7 +749,13 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
750
  features = datasets.Features(
751
  {
752
  "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
753
- "DEMO": datasets.Array2D(shape=(1, None), dtype='int32'),
 
 
 
 
 
 
754
 
755
  }
756
  )
 
254
  for key in range(len(keys)):
255
  dyn_temp=dyn_df[keys[key]]
256
  dyn_temp=dyn_temp.to_numpy()
257
+ dyn_temp=np.nan_to_num(dyn_temp,copy=False)
258
+ dyn_temp=list(dyn_temp)
259
  dyn[key]=dyn_temp
260
 
261
  for k in range(len(keys)):
 
271
  lab=dyn[k]
272
 
273
  stat=cond_df
274
+ stat=list(stat.to_numpy())
275
 
276
  y = demo['label']
277
 
 
291
  dyna=dyn.copy()
292
  dyna.columns=dyna.columns.droplevel(0)
293
  dyna=dyna.to_numpy()
294
+ dyna=np.nan_to_num(dyna, copy=False)
295
+ dyna=list(dyna)
296
  dyna=dyna.reshape(1,-1)
297
  dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
298
  else:
 
365
  taskf=task.replace(" ","_")
366
  for hid, data in tqdm(X.iterrows(),desc='Encoding Splits Data for '+task+' task'):
367
  stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, taskf, feat_cond, feat_proc, feat_out, feat_chart,feat_meds)
 
 
 
 
 
368
  X_dict[hid] = {'stat': stat, 'demo': demo, 'meds': meds, 'chart': chart, 'out': out, 'proc': proc, 'lab': lab, 'y': y}
369
 
370
  return X_dict
 
749
  features = datasets.Features(
750
  {
751
  "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
752
+ "DEMO": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
753
+ "COND" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
754
+ "MEDS" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
755
+ "PROC" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
756
+ "CHART" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
757
+ "OUT" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
758
+ "LAB" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
759
 
760
  }
761
  )