Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +12 -7
Mimic4Dataset.py
CHANGED
@@ -254,6 +254,8 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
254 |
for key in range(len(keys)):
|
255 |
dyn_temp=dyn_df[keys[key]]
|
256 |
dyn_temp=dyn_temp.to_numpy()
|
|
|
|
|
257 |
dyn[key]=dyn_temp
|
258 |
|
259 |
for k in range(len(keys)):
|
@@ -269,7 +271,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
269 |
lab=dyn[k]
|
270 |
|
271 |
stat=cond_df
|
272 |
-
stat=stat.to_numpy()
|
273 |
|
274 |
y = demo['label']
|
275 |
|
@@ -289,6 +291,8 @@ def getXY(dyn,stat,demo,concat_cols,concat):
|
|
289 |
dyna=dyn.copy()
|
290 |
dyna.columns=dyna.columns.droplevel(0)
|
291 |
dyna=dyna.to_numpy()
|
|
|
|
|
292 |
dyna=dyna.reshape(1,-1)
|
293 |
dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
|
294 |
else:
|
@@ -361,11 +365,6 @@ def generate_split_deep(path,task,feat_cond,feat_chart,feat_proc, feat_meds, fea
|
|
361 |
taskf=task.replace(" ","_")
|
362 |
for hid, data in tqdm(X.iterrows(),desc='Encoding Splits Data for '+task+' task'):
|
363 |
stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, taskf, feat_cond, feat_proc, feat_out, feat_chart,feat_meds)
|
364 |
-
meds=np.nan_to_num(meds, copy=False)
|
365 |
-
chart=np.nan_to_num(chart, copy=False)
|
366 |
-
out=np.nan_to_num(out, copy=False)
|
367 |
-
proc=np.nan_to_num(proc, copy=False)
|
368 |
-
lab=np.nan_to_num(lab, copy=False)
|
369 |
X_dict[hid] = {'stat': stat, 'demo': demo, 'meds': meds, 'chart': chart, 'out': out, 'proc': proc, 'lab': lab, 'y': y}
|
370 |
|
371 |
return X_dict
|
@@ -750,7 +749,13 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
750 |
features = datasets.Features(
|
751 |
{
|
752 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
753 |
-
"DEMO": datasets.
|
|
|
|
|
|
|
|
|
|
|
|
|
754 |
|
755 |
}
|
756 |
)
|
|
|
254 |
for key in range(len(keys)):
|
255 |
dyn_temp=dyn_df[keys[key]]
|
256 |
dyn_temp=dyn_temp.to_numpy()
|
257 |
+
dyn_temp=np.nan_to_num(dyn_temp,copy=False)
|
258 |
+
dyn_temp=list(dyn_temp)
|
259 |
dyn[key]=dyn_temp
|
260 |
|
261 |
for k in range(len(keys)):
|
|
|
271 |
lab=dyn[k]
|
272 |
|
273 |
stat=cond_df
|
274 |
+
stat=list(stat.to_numpy())
|
275 |
|
276 |
y = demo['label']
|
277 |
|
|
|
291 |
dyna=dyn.copy()
|
292 |
dyna.columns=dyna.columns.droplevel(0)
|
293 |
dyna=dyna.to_numpy()
|
294 |
+
dyna=np.nan_to_num(dyna, copy=False)
|
295 |
+
dyna=list(dyna)
|
296 |
dyna=dyna.reshape(1,-1)
|
297 |
dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
|
298 |
else:
|
|
|
365 |
taskf=task.replace(" ","_")
|
366 |
for hid, data in tqdm(X.iterrows(),desc='Encoding Splits Data for '+task+' task'):
|
367 |
stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, taskf, feat_cond, feat_proc, feat_out, feat_chart,feat_meds)
|
|
|
|
|
|
|
|
|
|
|
368 |
X_dict[hid] = {'stat': stat, 'demo': demo, 'meds': meds, 'chart': chart, 'out': out, 'proc': proc, 'lab': lab, 'y': y}
|
369 |
|
370 |
return X_dict
|
|
|
749 |
features = datasets.Features(
|
750 |
{
|
751 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
752 |
+
"DEMO": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
753 |
+
"COND" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
754 |
+
"MEDS" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
755 |
+
"PROC" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
756 |
+
"CHART" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
757 |
+
"OUT" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
758 |
+
"LAB" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
759 |
|
760 |
}
|
761 |
)
|