Update dataset_utils.py
Browse files- dataset_utils.py +4 -6
dataset_utils.py
CHANGED
@@ -135,7 +135,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
135 |
for p,v in zip(feat,proc_val):
|
136 |
procs[p]=v
|
137 |
procs.columns=pd.MultiIndex.from_product([["PROC"], procs.columns])
|
138 |
-
proc_df = pd.concat([features,procs],
|
139 |
else:
|
140 |
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
141 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
@@ -157,7 +157,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
157 |
for o,v in zip(feat,out_val):
|
158 |
outs[o]=v
|
159 |
outs.columns=pd.MultiIndex.from_product([["OUT"], outs.columns])
|
160 |
-
out_df = pd.concat([features,outs]
|
161 |
else:
|
162 |
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
163 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
@@ -170,7 +170,6 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
170 |
chartDic = pickle.load(fp)
|
171 |
|
172 |
if chart:
|
173 |
-
print('ok')
|
174 |
charts=chart['val']
|
175 |
feat=charts.keys()
|
176 |
chart_val=[charts[key] for key in feat]
|
@@ -188,7 +187,6 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
188 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
189 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
190 |
chart_df=features.fillna(0)
|
191 |
-
print(chart_df)
|
192 |
##########LAB#########
|
193 |
if (feat_lab):
|
194 |
with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
|
@@ -206,7 +204,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
206 |
for c,v in zip(feat,chart_val):
|
207 |
chart[c]=v
|
208 |
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
|
209 |
-
chart_df = pd.concat([features,chart],
|
210 |
else:
|
211 |
charts=pd.DataFrame(chartDic,columns=['LAB'])
|
212 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
@@ -229,7 +227,7 @@ def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat
|
|
229 |
for m,v in zip(feat,med_val):
|
230 |
med[m]=v
|
231 |
med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns])
|
232 |
-
meds_df = pd.concat([features,med],
|
233 |
else:
|
234 |
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
235 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
|
|
135 |
for p,v in zip(feat,proc_val):
|
136 |
procs[p]=v
|
137 |
procs.columns=pd.MultiIndex.from_product([["PROC"], procs.columns])
|
138 |
+
proc_df = pd.concat([features,procs],axis=1).fillna(0)
|
139 |
else:
|
140 |
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
141 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
|
|
157 |
for o,v in zip(feat,out_val):
|
158 |
outs[o]=v
|
159 |
outs.columns=pd.MultiIndex.from_product([["OUT"], outs.columns])
|
160 |
+
out_df = pd.concat([features,outs],,axis=1).fillna(0)
|
161 |
else:
|
162 |
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
163 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
|
|
170 |
chartDic = pickle.load(fp)
|
171 |
|
172 |
if chart:
|
|
|
173 |
charts=chart['val']
|
174 |
feat=charts.keys()
|
175 |
chart_val=[charts[key] for key in feat]
|
|
|
187 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
188 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
189 |
chart_df=features.fillna(0)
|
|
|
190 |
##########LAB#########
|
191 |
if (feat_lab):
|
192 |
with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
|
|
|
204 |
for c,v in zip(feat,chart_val):
|
205 |
chart[c]=v
|
206 |
chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
|
207 |
+
chart_df = pd.concat([features,chart],axis=1).fillna(0)
|
208 |
else:
|
209 |
charts=pd.DataFrame(chartDic,columns=['LAB'])
|
210 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
|
|
|
227 |
for m,v in zip(feat,med_val):
|
228 |
med[m]=v
|
229 |
med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns])
|
230 |
+
meds_df = pd.concat([features,med],axis=1).fillna(0)
|
231 |
else:
|
232 |
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
233 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|