import datetime import os import sys import numpy as np import pandas as pd from pathlib import Path from tqdm import tqdm import importlib import disease_cohort importlib.reload(disease_cohort) import disease_cohort sys.path.append(os.path.dirname(os.path.abspath(__file__)) + './../..') if not os.path.exists("./data/cohort"): os.makedirs("./data/cohort") if not os.path.exists("./data/summary"): os.makedirs("./data/summary") def get_visit_pts(mimic4_path:str, group_col:str, visit_col:str, admit_col:str, disch_col:str, adm_visit_col:str, use_mort:bool, use_los:bool, los:int, use_admn:bool, disease_label:str,use_ICU:bool): """Combines the MIMIC-IV core/patients table information with either the icu/icustays or core/admissions data. Parameters: mimic4_path: path to mimic-iv folder containing MIMIC-IV data group_col: patient identifier to group patients (normally subject_id) visit_col: visit identifier for individual patient visits (normally hadm_id or stay_id) admit_col: column for visit start date information (normally admittime or intime) disch_col: column for visit end date information (normally dischtime or outtime) use_ICU: describes whether to speficially look at ICU visits in icu/icustays OR look at general admissions from core/admissions """ visit = None # df containing visit information depending on using ICU or not if use_ICU: visit = pd.read_csv(mimic4_path + "icu/icustays.csv.gz", compression='gzip', header=0, index_col=None, parse_dates=[admit_col, disch_col]) if use_admn: # icustays doesn't have a way to identify if patient died during visit; must # use core/patients to remove such stay_ids for readmission labels pts = pd.read_csv(mimic4_path + "hosp/patients.csv.gz", compression='gzip', header=0, index_col=None, usecols=['subject_id', 'dod'], parse_dates=['dod']) visit = visit.merge(pts, how='inner', left_on='subject_id', right_on='subject_id') visit = visit.loc[(visit.dod.isna()) | (visit.dod >= visit[disch_col])] if len(disease_label): hids=disease_cohort.extract_diag_cohort(visit['hadm_id'],disease_label,mimic4_path) visit=visit[visit['hadm_id'].isin(hids['hadm_id'])] print("[ READMISSION DUE TO "+disease_label+" ]") else: visit = pd.read_csv(mimic4_path + "hosp/admissions.csv.gz", compression='gzip', header=0, index_col=None, parse_dates=[admit_col, disch_col]) visit['los']=visit[disch_col]-visit[admit_col] visit[admit_col] = pd.to_datetime(visit[admit_col]) visit[disch_col] = pd.to_datetime(visit[disch_col]) visit['los']=pd.to_timedelta(visit[disch_col]-visit[admit_col],unit='h') visit['los']=visit['los'].astype(str) visit[['days', 'dummy','hours']] = visit['los'].str.split(' ', -1, expand=True) visit['los']=pd.to_numeric(visit['days']) visit=visit.drop(columns=['days', 'dummy','hours']) if use_admn: # remove hospitalizations with a death; impossible for readmission for such visits visit = visit.loc[visit.hospital_expire_flag == 0] if len(disease_label): hids=disease_cohort.extract_diag_cohort(visit['hadm_id'],disease_label,mimic4_path) visit=visit[visit['hadm_id'].isin(hids['hadm_id'])] print("[ READMISSION DUE TO "+disease_label+" ]") pts = pd.read_csv( mimic4_path + "hosp/patients.csv.gz", compression='gzip', header=0, index_col = None, usecols=[group_col, 'anchor_year', 'anchor_age', 'anchor_year_group', 'dod','gender'] ) pts['yob']= pts['anchor_year'] - pts['anchor_age'] # get yob to ensure a given visit is from an adult pts['min_valid_year'] = pts['anchor_year'] + (2019 - pts['anchor_year_group'].str.slice(start=-4).astype(int)) # Define anchor_year corresponding to the anchor_year_group 2017-2019. This is later used to prevent consideration # of visits with prediction windows outside the dataset's time range (2008-2019) #[[group_col, visit_col, admit_col, disch_col]] if use_ICU: visit_pts = visit[[group_col, visit_col, adm_visit_col, admit_col, disch_col,'los']].merge( pts[[group_col, 'anchor_year', 'anchor_age', 'yob', 'min_valid_year', 'dod','gender']], how='inner', left_on=group_col, right_on=group_col ) else: visit_pts = visit[[group_col, visit_col, admit_col, disch_col,'los']].merge( pts[[group_col, 'anchor_year', 'anchor_age', 'yob', 'min_valid_year', 'dod','gender']], how='inner', left_on=group_col, right_on=group_col ) # only take adult patients # visit_pts['Age']=visit_pts[admit_col].dt.year - visit_pts['yob'] # visit_pts = visit_pts.loc[visit_pts['Age'] >= 18] visit_pts['Age']=visit_pts['anchor_age'] visit_pts = visit_pts.loc[visit_pts['Age'] >= 18] ##Add Demo data eth = pd.read_csv(mimic4_path + "hosp/admissions.csv.gz", compression='gzip', header=0, usecols=['hadm_id', 'insurance','race'], index_col=None) visit_pts= visit_pts.merge(eth, how='inner', left_on='hadm_id', right_on='hadm_id') if use_ICU: return visit_pts[[group_col, visit_col, adm_visit_col, admit_col, disch_col,'los', 'min_valid_year', 'dod','Age','gender','race', 'insurance']] else: return visit_pts.dropna(subset=['min_valid_year'])[[group_col, visit_col, admit_col, disch_col,'los', 'min_valid_year', 'dod','Age','gender','race', 'insurance']] def validate_row(row, ctrl, invalid, max_year, disch_col, valid_col, gap): """Checks if visit's prediction window potentially extends beyond the dataset range (2008-2019). An 'invalid row' is NOT guaranteed to be outside the range, only potentially outside due to de-identification of MIMIC-IV being done through 3-year time ranges. To be invalid, the end of the prediction window's year must both extend beyond the maximum seen year for a patient AND beyond the year that corresponds to the 2017-2019 anchor year range for a patient""" print("disch_col",row[disch_col]) print(gap) pred_year = (row[disch_col] + gap).year if max_year < pred_year and pred_year > row[valid_col]: invalid = invalid.append(row) else: ctrl = ctrl.append(row) return ctrl, invalid def partition_by_los(df:pd.DataFrame, los:int, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str): invalid = df.loc[(df[admit_col].isna()) | (df[disch_col].isna()) | (df['los'].isna())] cohort = df.loc[(~df[admit_col].isna()) & (~df[disch_col].isna()) & (~df['los'].isna())] #cohort=cohort.fillna(0) pos_cohort=cohort[cohort['los']>los] neg_cohort=cohort[cohort['los']<=los] neg_cohort=neg_cohort.fillna(0) pos_cohort=pos_cohort.fillna(0) pos_cohort['label']=1 neg_cohort['label']=0 cohort=pd.concat([pos_cohort,neg_cohort], axis=0) cohort=cohort.sort_values(by=[group_col,admit_col]) #print("cohort",cohort.shape) print("[ LOS LABELS FINISHED ]") return cohort, invalid def partition_by_readmit(df:pd.DataFrame, gap:datetime.timedelta, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str): """Applies labels to individual visits according to whether or not a readmission has occurred within the specified `gap` days. For a given visit, another visit must occur within the gap window for a positive readmission label. The gap window starts from the disch_col time and the admit_col of subsequent visits are considered.""" case = pd.DataFrame() # hadm_ids with readmission within the gap period ctrl = pd.DataFrame() # hadm_ids without readmission within the gap period invalid = pd.DataFrame() # hadm_ids that are not considered in the cohort # Iterate through groupbys based on group_col (subject_id). Data is sorted by subject_id and admit_col (admittime) # to ensure that the most current hadm_id is last in a group. #grouped= df[[group_col, visit_col, admit_col, disch_col, valid_col]].sort_values(by=[group_col, admit_col]).groupby(group_col) grouped= df.sort_values(by=[group_col, admit_col]).groupby(group_col) for subject, group in tqdm(grouped): max_year = group.max()[disch_col].year if group.shape[0] <= 1: #ctrl, invalid = validate_row(group.iloc[0], ctrl, invalid, max_year, disch_col, valid_col, gap) # A group with 1 row has no readmission; goes to ctrl ctrl = ctrl.append(group.iloc[0]) else: for idx in range(group.shape[0]-1): visit_time = group.iloc[idx][disch_col] # For each index (a unique hadm_id), get its timestamp if group.loc[ (group[admit_col] > visit_time) & # Readmissions must come AFTER the current timestamp (group[admit_col] - visit_time <= gap) # Distance between a timestamp and readmission must be within gap ].shape[0] >= 1: # If ANY rows meet above requirements, a readmission has occurred after that visit case = case.append(group.iloc[idx]) else: # If no readmission is found, only add to ctrl if prediction window is guaranteed to be within the # time range of the dataset (2008-2019). Visits with prediction windows existing in potentially out-of-range # dates (like 2018-2020) are excluded UNLESS the prediction window takes place the same year as the visit, # in which case it is guaranteed to be within 2008-2019 ctrl = ctrl.append(group.iloc[idx]) #ctrl, invalid = validate_row(group.iloc[-1], ctrl, invalid, max_year, disch_col, valid_col, gap) # The last hadm_id datewise is guaranteed to have no readmission logically ctrl = ctrl.append(group.iloc[-1]) #print(f"[ {gap.days} DAYS ] {case.shape[0] + ctrl.shape[0]}/{df.shape[0]} {visit_col}s processed") print("[ READMISSION LABELS FINISHED ]") return case, ctrl, invalid def partition_by_mort(df:pd.DataFrame, group_col:str, visit_col:str, admit_col:str, disch_col:str, death_col:str): """Applies labels to individual visits according to whether or not a death has occurred within the times of the specified admit_col and disch_col""" invalid = df.loc[(df[admit_col].isna()) | (df[disch_col].isna())] cohort = df.loc[(~df[admit_col].isna()) & (~df[disch_col].isna())] # cohort["label"] = ( # (~cohort[death_col].isna()) # & (cohort[death_col] >= cohort[admit_col]) # & (cohort[death_col] <= cohort[disch_col]) # ) # cohort["label"] = cohort["label"].astype("Int32") #print("cohort",cohort.shape) #print(np.where(~cohort[death_col].isna(),1,0)) #print(np.where(cohort.loc[death_col] >= cohort.loc[admit_col],1,0)) #print(np.where(cohort.loc[death_col] <= cohort.loc[disch_col],1,0)) cohort['label']=0 #cohort=cohort.fillna(0) pos_cohort=cohort[~cohort[death_col].isna()] neg_cohort=cohort[cohort[death_col].isna()] neg_cohort=neg_cohort.fillna(0) pos_cohort=pos_cohort.fillna(0) pos_cohort[death_col] = pd.to_datetime(pos_cohort[death_col]) pos_cohort['label'] = np.where((pos_cohort[death_col] >= pos_cohort[admit_col]) & (pos_cohort[death_col] <= pos_cohort[disch_col]),1,0) pos_cohort['label'] = pos_cohort['label'].astype("Int32") cohort=pd.concat([pos_cohort,neg_cohort], axis=0) cohort=cohort.sort_values(by=[group_col,admit_col]) #print("cohort",cohort.shape) print("[ MORTALITY LABELS FINISHED ]") return cohort, invalid def get_case_ctrls(df:pd.DataFrame, gap:int, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str, death_col:str, use_mort=False,use_admn=False,use_los=False) -> pd.DataFrame: """Handles logic for creating the labelled cohort based on arguments passed to extract(). Parameters: df: dataframe with patient data gap: specified time interval gap for readmissions group_col: patient identifier to group patients (normally subject_id) visit_col: visit identifier for individual patient visits (normally hadm_id or stay_id) admit_col: column for visit start date information (normally admittime or intime) disch_col: column for visit end date information (normally dischtime or outtime) valid_col: generated column containing a patient's year that corresponds to the 2017-2019 anchor time range dod_col: Date of death column """ case = None # hadm_ids with readmission within the gap period ctrl = None # hadm_ids without readmission within the gap period invalid = None # hadm_ids that are not considered in the cohort if use_mort: return partition_by_mort(df, group_col, visit_col, admit_col, disch_col, death_col) elif use_admn: gap = datetime.timedelta(days=gap) # transform gap into a timedelta to compare with datetime columns case, ctrl, invalid = partition_by_readmit(df, gap, group_col, visit_col, admit_col, disch_col, valid_col) # case hadm_ids are labelled 1 for readmission, ctrls have a 0 label case['label'] = np.ones(case.shape[0]).astype(int) ctrl['label'] = np.zeros(ctrl.shape[0]).astype(int) return pd.concat([case, ctrl], axis=0), invalid elif use_los: return partition_by_los(df, gap, group_col, visit_col, admit_col, disch_col, death_col) # print(f"[ {gap.days} DAYS ] {invalid.shape[0]} hadm_ids are invalid") def extract_data(use_ICU:str, label:str, time:int, icd_code:str, root_dir,mimic_path, disease_label, cohort_output=None, summary_output=None): """Extracts cohort data and summary from MIMIC-IV data based on provided parameters. Parameters: cohort_output: name of labelled cohort output file summary_output: name of summary output file use_ICU: state whether to use ICU patient data or not label: Can either be '{day} day Readmission' or 'Mortality', decides what binary data label signifies""" print("===========MIMIC-IV v2============") if not cohort_output: cohort_output="cohort_" + use_ICU.lower() + "_" + label.lower().replace(" ", "_") + "_" + str(time) + "_" + disease_label if not summary_output: summary_output="summary_" + use_ICU.lower() + "_" + label.lower().replace(" ", "_") + "_" + str(time) + "_" + disease_label if icd_code=="No Disease Filter": if len(disease_label): print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} DUE TO {disease_label.upper()} | {str(time)} | ") else: print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} | {str(time)} |") else: if len(disease_label): print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} DUE TO {disease_label.upper()} | ADMITTED DUE TO {icd_code.upper()} | {str(time)} |") else: print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} | ADMITTED DUE TO {icd_code.upper()} | {str(time)} |") #print(label) cohort, invalid = None, None # final labelled output and df of invalid records, respectively pts = None # valid patients generated by get_visit_pts based on use_ICU and label ICU=use_ICU group_col, visit_col, admit_col, disch_col, death_col, adm_visit_col = "", "", "", "", "", "" #print(label) use_mort = label == "Mortality" # change to boolean value use_admn=label=='Readmission' los=0 use_los= label=='Length of Stay' #print(use_mort) #print(use_admn) #print(use_los) if use_los: los=time use_ICU = use_ICU == "ICU" # change to boolean value use_disease=icd_code!="No Disease Filter" if use_ICU: group_col='subject_id' visit_col='stay_id' admit_col='intime' disch_col='outtime' death_col='dod' adm_visit_col='hadm_id' else: group_col='subject_id' visit_col='hadm_id' admit_col='admittime' disch_col='dischtime' death_col='dod' pts = get_visit_pts( mimic4_path=mimic_path, group_col=group_col, visit_col=visit_col, admit_col=admit_col, disch_col=disch_col, adm_visit_col=adm_visit_col, use_mort=use_mort, use_los=use_los, los=los, use_admn=use_admn, disease_label=disease_label, use_ICU=use_ICU ) #print("pts",pts.head()) # cols to be extracted from get_case_ctrls cols = [group_col, visit_col, admit_col, disch_col, 'Age','gender','ethnicity','insurance','label'] if use_mort: cols.append(death_col) cohort, invalid = get_case_ctrls(pts, None, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=True,use_admn=False,use_los=False) elif use_admn: interval = time cohort, invalid = get_case_ctrls(pts, interval, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=False,use_admn=True,use_los=False) elif use_los: cohort, invalid = get_case_ctrls(pts, los, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=False,use_admn=False,use_los=True) #print(cohort.head()) if use_ICU: cols.append(adm_visit_col) #print(cohort.head()) if use_disease: hids=disease_cohort.extract_diag_cohort(cohort['hadm_id'],icd_code,mimic_path) #print(hids.shape) #print(cohort.shape) #print(len(list(set(hids['hadm_id'].unique()).intersection(set(cohort['hadm_id'].unique()))))) cohort=cohort[cohort['hadm_id'].isin(hids['hadm_id'])] cohort_output=cohort_output+"_"+icd_code summary_output=summary_output+"_"+icd_code #print(cohort[cols].head()) # save output cohort=cohort.rename(columns={"race":"ethnicity"}) cohort[cols].to_csv("./data/cohort/"+cohort_output+".csv.gz", index=False, compression='gzip') print("[ COHORT SUCCESSFULLY SAVED ]") summary = "\n".join([ f"{label} FOR {ICU} DATA", f"# Admission Records: {cohort.shape[0]}", f"# Patients: {cohort[group_col].nunique()}", f"# Positive cases: {cohort[cohort['label']==1].shape[0]}", f"# Negative cases: {cohort[cohort['label']==0].shape[0]}" ]) # save basic summary of data with open(f"./data/cohort/{summary_output}.txt", "w") as f: f.write(summary) print("[ SUMMARY SUCCESSFULLY SAVED ]") print(summary) return cohort_output if __name__ == '__main__': # use_ICU = input("Use ICU Data? (ICU/Non_ICU)\n").strip() # label = input("Please input the intended label:\n").strip() # extract(use_ICU, label) response = input('Extra all datasets? (y/n)').strip().lower() if response == 'y': extract_data("ICU", "Mortality") extract_data("Non-ICU", "Mortality") extract_data("ICU", "30 Day Readmission") extract_data("Non-ICU", "30 Day Readmission") extract_data("ICU", "60 Day Readmission") extract_data("Non-ICU", "60 Day Readmission") extract_data("ICU", "120 Day Readmission") extract_data("Non-ICU", "120 Day Readmission")