|
--- |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
dataset_info: |
|
features: |
|
- name: Id |
|
dtype: string |
|
- name: PostTypeId |
|
dtype: string |
|
- name: AcceptedAnswerId |
|
dtype: string |
|
- name: ParentId |
|
dtype: string |
|
- name: Score |
|
dtype: string |
|
- name: ViewCount |
|
dtype: string |
|
- name: Body |
|
dtype: string |
|
- name: Title |
|
dtype: string |
|
- name: ContentLicense |
|
dtype: string |
|
- name: FavoriteCount |
|
dtype: string |
|
- name: CreationDate |
|
dtype: string |
|
- name: LastActivityDate |
|
dtype: string |
|
- name: LastEditDate |
|
dtype: string |
|
- name: LastEditorUserId |
|
dtype: string |
|
- name: OwnerUserId |
|
dtype: string |
|
- name: Tags |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 566804417 |
|
num_examples: 411232 |
|
download_size: 311064786 |
|
dataset_size: 566804417 |
|
language: |
|
- code |
|
- en |
|
task_categories: |
|
- question-answering |
|
- text-generation |
|
- text2text-generation |
|
tags: |
|
- code |
|
--- |
|
# Cross Validated / stats.stackexchange.com |
|
|
|
## Dataset Summary |
|
|
|
This dataset contains all posts submitted to stats.stackexchange.com before the 30th of August 2023 formatted as **Markdown text**.<br> |
|
The data is sourced from [Internet Archive StackExchange Data Dump](https://archive.org/download/stackexchange) and follows the format by [mikex86/stackoverflow-posts](https://huggingface.co/datasets/mikex86/stackoverflow-posts) |
|
|
|
## Dataset Structure |
|
|
|
Each record corresponds to one post of a particular type. |
|
Original ordering from the data dump is not exactly preserved due to parallelism in the script used to process the data dump. |
|
The markdown content of each post is contained in the `Body` field. The license for a particular post is contained in the `ContentLicense` field. |
|
|
|
|
|
### Data Fields |
|
```typescript |
|
{ |
|
Id: long, |
|
PostTypeId: long, // 1=Question, 2=Answer, 3=Orphaned tag wiki, 4=Tag wiki excerpt, 5=Tag wiki, 6=Moderator nomination, 7=Wiki Placeholder, 8=Privilige Wiki |
|
AcceptedAnswerId: long | null, // only present if PostTypeId=1 |
|
ParentId: long | null, // only present if PostTypeId=2 |
|
Score: long, |
|
ViewCount: long | null, |
|
Body: string | null, |
|
Title: string | null, |
|
ContentLicense: string | null, |
|
FavoriteCount: long | null, |
|
CreationDate: string | null, |
|
LastActivityDate: string | null, |
|
LastEditDate: string | null, |
|
LastEditorUserId: long | null, |
|
OwnerUserId: long | null, |
|
Tags: array<string> | null |
|
} |
|
``` |
|
Also consider the [StackExchange Datadump Schema Documentation](https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede), as all fields |
|
have analogs in the original dump format. |
|
|
|
## How to use? |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# predownload full dataset |
|
ds = load_dataset('theblackcat102/crossvalidated-posts', split='train') |
|
|
|
# dataset streaming (will only download the data as needed) |
|
ds = load_dataset('theblackcat102/crossvalidated-posts', split='train', streaming=True) |
|
|
|
for sample in iter(ds): print(sample["Body"]) |
|
``` |
|
|
|
## How is the text stored? |
|
|
|
The original Data Dump formats the "Body" field as HTML, using tags such as `<code>`, `<h1>`, `<ul>`, etc. |
|
This HTML format has been converted to Markdown following [mikex86/stackoverflow-posts](https://huggingface.co/datasets/mikex86/stackoverflow-posts) conversion rule. |
|
|
|
|
|
**Example:** |
|
|
|
After differencing I saw that my constant/intercept is not statistically significant. Does anybody know how to fit the same model without the const term? |
|
im using statsmodels.tsa.arima.model |
|
To give a relative example I have: `ARIMA(data, order=(3,0,0))` an AR(3) model and say it that the second coefficient is insignificant. I can get rid of it by typing |
|
``` |
|
ARMA(data,order=([1, 3], 0, 0) |
|
``` |
|
|
|
but how can I get rid of coefficient?? |
|
|
|
|