Datasets:
Tasks:
Text Retrieval
Sub-tasks:
entity-linking-retrieval
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
Commit
•
f8c8d34
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- docred.py +123 -0
- dummy/0.0.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed from Wikipedia and Wikidata with three features:\n - DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text.\n - DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document.\n - Along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios.\n", "citation": "@inproceedings{yao2019DocRED,\n title={{DocRED}: A Large-Scale Document-Level Relation Extraction Dataset},\n author={Yao, Yuan and Ye, Deming and Li, Peng and Han, Xu and Lin, Yankai and Liu, Zhenghao and Liu, Zhiyuan and Huang, Lixin and Zhou, Jie and Sun, Maosong},\n booktitle={Proceedings of ACL 2019},\n year={2019}\n}\n", "homepage": "https://github.com/thunlp/DocRED", "license": "", "features": {"title": {"dtype": "string", "id": null, "_type": "Value"}, "sents": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "vertexSet": [[{"name": {"dtype": "string", "id": null, "_type": "Value"}, "sent_id": {"dtype": "int32", "id": null, "_type": "Value"}, "pos": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "type": {"dtype": "string", "id": null, "_type": "Value"}}]], "labels": {"feature": {"head": {"dtype": "int32", "id": null, "_type": "Value"}, "tail": {"dtype": "int32", "id": null, "_type": "Value"}, "relation_id": {"dtype": "string", "id": null, "_type": "Value"}, "relation_text": {"dtype": "string", "id": null, "_type": "Value"}, "evidence": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "doc_red", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 3435087, "num_examples": 1000, "dataset_name": "doc_red"}, "test": {"name": "test", "num_bytes": 2843877, "num_examples": 1000, "dataset_name": "doc_red"}, "train_annotated": {"name": "train_annotated", "num_bytes": 10413156, "num_examples": 3053, "dataset_name": "doc_red"}, "train_distant": {"name": "train_distant", "num_bytes": 3435087, "num_examples": 1000, "dataset_name": "doc_red"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1fDmfUUo5G7gfaoqWWvK81u08m71TK2g7": {"num_bytes": 4299810, "checksum": "85691c5ca1df0048bffab1c1cf53d7d35b5de40f3de0a2c563c03da28746d5cb"}, "https://drive.google.com/uc?export=download&id=1NN33RzyETbanw4Dg2sRrhckhWpzuBQS9": {"num_bytes": 13029595, "checksum": "7e706348a02cf91f38bd8c379f934ab61aedadc901fca10d962c1d82ab78e95b"}, "https://drive.google.com/uc?export=download&id=1lAVDcD94Sigx7gR3jTfStI66o86cflum": {"num_bytes": 3674242, "checksum": "09386b5cb58249d8e087863c379ebd64557169c52ee502193d2f4f215e704ae8"}, "https://drive.google.com/uc?id=1y9A0zKrvETc1ddUFuFhBg3Xfr7FEL4dW&export=download": {"num_bytes": 2452, "checksum": "5ecf4e5e55c179fc83a3a3d19baa01efffecb26ba5edc0b4ac5a54ddf61fe3de"}}, "download_size": 21006099, "dataset_size": 20127207, "size_in_bytes": 41133306}}
|
docred.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset"""
|
2 |
+
|
3 |
+
from __future__ import absolute_import, division, print_function
|
4 |
+
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{yao2019DocRED,
|
13 |
+
title={{DocRED}: A Large-Scale Document-Level Relation Extraction Dataset},
|
14 |
+
author={Yao, Yuan and Ye, Deming and Li, Peng and Han, Xu and Lin, Yankai and Liu, Zhenghao and Liu, \
|
15 |
+
Zhiyuan and Huang, Lixin and Zhou, Jie and Sun, Maosong},
|
16 |
+
booktitle={Proceedings of ACL 2019},
|
17 |
+
year={2019}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_DESCRIPTION = """\
|
22 |
+
Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by \
|
23 |
+
existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single \
|
24 |
+
entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed \
|
25 |
+
from Wikipedia and Wikidata with three features:
|
26 |
+
- DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text.
|
27 |
+
- DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document.
|
28 |
+
- Along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios.
|
29 |
+
"""
|
30 |
+
|
31 |
+
_URLS = {
|
32 |
+
"dev": "https://drive.google.com/uc?export=download&id=1fDmfUUo5G7gfaoqWWvK81u08m71TK2g7",
|
33 |
+
"train_distant": "https://drive.google.com/uc?export=download&id=1fDmfUUo5G7gfaoqWWvK81u08m71TK2g7",
|
34 |
+
"train_annotated": "https://drive.google.com/uc?export=download&id=1NN33RzyETbanw4Dg2sRrhckhWpzuBQS9",
|
35 |
+
"test": "https://drive.google.com/uc?export=download&id=1lAVDcD94Sigx7gR3jTfStI66o86cflum",
|
36 |
+
"rel_info": "https://drive.google.com/uc?id=1y9A0zKrvETc1ddUFuFhBg3Xfr7FEL4dW&export=download",
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
class DocRed(datasets.GeneratorBasedBuilder):
|
41 |
+
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset"""
|
42 |
+
|
43 |
+
def _info(self):
|
44 |
+
return datasets.DatasetInfo(
|
45 |
+
description=_DESCRIPTION,
|
46 |
+
features=datasets.Features(
|
47 |
+
{
|
48 |
+
"title": datasets.Value("string"),
|
49 |
+
"sents": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
|
50 |
+
"vertexSet": [
|
51 |
+
[
|
52 |
+
{
|
53 |
+
"name": datasets.Value("string"),
|
54 |
+
"sent_id": datasets.Value("int32"),
|
55 |
+
"pos": datasets.features.Sequence(datasets.Value("int32")),
|
56 |
+
"type": datasets.Value("string"),
|
57 |
+
}
|
58 |
+
]
|
59 |
+
],
|
60 |
+
"labels": datasets.features.Sequence(
|
61 |
+
{
|
62 |
+
"head": datasets.Value("int32"),
|
63 |
+
"tail": datasets.Value("int32"),
|
64 |
+
"relation_id": datasets.Value("string"),
|
65 |
+
"relation_text": datasets.Value("string"),
|
66 |
+
"evidence": datasets.features.Sequence(datasets.Value("int32")),
|
67 |
+
}
|
68 |
+
),
|
69 |
+
}
|
70 |
+
),
|
71 |
+
supervised_keys=None,
|
72 |
+
homepage="https://github.com/thunlp/DocRED",
|
73 |
+
citation=_CITATION,
|
74 |
+
)
|
75 |
+
|
76 |
+
def _split_generators(self, dl_manager):
|
77 |
+
downloads = {}
|
78 |
+
for key in _URLS.keys():
|
79 |
+
downloads[key] = dl_manager.download_and_extract(_URLS[key])
|
80 |
+
# Fix for dummy data
|
81 |
+
if os.path.isdir(downloads[key]):
|
82 |
+
downloads[key] = os.path.join(downloads[key], key + ".json")
|
83 |
+
|
84 |
+
return [
|
85 |
+
datasets.SplitGenerator(
|
86 |
+
name=datasets.Split.VALIDATION,
|
87 |
+
gen_kwargs={"filepath": downloads["dev"], "rel_info": downloads["rel_info"]},
|
88 |
+
),
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"], "rel_info": downloads["rel_info"]}
|
91 |
+
),
|
92 |
+
datasets.SplitGenerator(
|
93 |
+
name="train_annotated",
|
94 |
+
gen_kwargs={"filepath": downloads["train_annotated"], "rel_info": downloads["rel_info"]},
|
95 |
+
),
|
96 |
+
datasets.SplitGenerator(
|
97 |
+
name="train_distant",
|
98 |
+
gen_kwargs={"filepath": downloads["train_distant"], "rel_info": downloads["rel_info"]},
|
99 |
+
),
|
100 |
+
]
|
101 |
+
|
102 |
+
def _generate_examples(self, filepath, rel_info):
|
103 |
+
"""Generate DocRED examples."""
|
104 |
+
relation_name_map = json.load(open(rel_info))
|
105 |
+
data = json.load(open(filepath))
|
106 |
+
|
107 |
+
for idx, example in enumerate(data):
|
108 |
+
|
109 |
+
# Test set has no labels - Results need to be uploaded to Codalab
|
110 |
+
if "labels" not in example.keys():
|
111 |
+
example["labels"] = []
|
112 |
+
|
113 |
+
for label in example["labels"]:
|
114 |
+
# Rename and include full relation names
|
115 |
+
label["relation_text"] = relation_name_map[label["r"]]
|
116 |
+
label["relation_id"] = label["r"]
|
117 |
+
label["head"] = label["h"]
|
118 |
+
label["tail"] = label["t"]
|
119 |
+
del label["r"]
|
120 |
+
del label["h"]
|
121 |
+
del label["t"]
|
122 |
+
|
123 |
+
yield idx, example
|
dummy/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad5f87bbf1d936f40558f6ec5949e2e3a58c5c902c585082cb17519cc0005006
|
3 |
+
size 1888
|