Datasets:

Modalities:
Text
Languages:
code
ArXiv:
Libraries:
Datasets
License:
File size: 2,992 Bytes
6c9c30d
f304937
 
391f4b2
6ec8105
3a37514
f304937
 
 
 
 
 
 
 
 
 
6c9c30d
71998d6
f304937
71998d6
 
 
f304937
 
71998d6
514d49e
71998d6
b10acdb
f304937
71998d6
514d49e
71998d6
514d49e
71998d6
514d49e
71998d6
514d49e
71998d6
514d49e
71998d6
23c05e6
 
 
 
71998d6
514d49e
71998d6
e3c387a
 
23c05e6
 
71998d6
514d49e
71998d6
23c05e6
71998d6
514d49e
 
71998d6
578c19d
514d49e
71998d6
578c19d
 
514d49e
71998d6
8fd6e57
514d49e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
language_creators:
- found
language:
- code
license:
- cc-by-nc-nd-4.0
multilinguality:
- multilingual
pretty_name: RepoBench-Retrieval
source_datasets:
- original
task_categories:
- text-retrieval
task_ids:
- document-retrieval
---

# Dataset Card for RepoBench-R

## Dataset Description

- **Homepage:** https://github.com/Leolty/repobench
- **Paper:** https://arxiv.org/abs/2306.03091

## Dataset Summary

**RepoBench-R (Retrieval)** is a subtask of **RepoBench**([GitHub](https://github.com/Leolty/repobench), [arXiv](https://arxiv.org/abs/2306.03091)), targeting the retrieval component of a repository-level auto-completion system, focusing on retrieving the most relevant code snippet from a project repository for next-line
code prediction. 

## Settings

- `cff`: short for cross_file_first, indicating the cross-file module in next line is first used in the current file.

- `cfr`: short for cross_file_random, indicating the cross-file module in next line is not first used in the current file.

## Supported Tasks 

The dataset has 4 subsets:

- `python_cff`: python dataset with `cff` setting.
- `python_cfr`: python dataset with `cfr` setting.
- `java_cff`: java dataset with `cff` setting.
- `java_cfr`: java dataset with `cfr` setting.

Each subset has 4 splits:

- `train_easy`: training set with easy difficulty, where the number of code snippets in the context \\(k\\) satisfies \\( 5 \leq k < 10 \\).
- `train_hard`: training set with hard difficulty, where the number of code snippets in the context \\(k\\) satisfies \\( k \geq 10 \\).
- `test_easy`: testing set with easy difficulty.
- `test_hard`: testing set with hard difficulty.

## Loading Data

For example, if you want to load the `test` `cross_file_first` `python` dataset with `easy` difficulty, you can use the following code:

```python
from datasets import load_dataset

dataset = load_dataset("tianyang/repobench-r", "python_cff", split="test_easy")
```

> Note: The `split` argument is optional. If not provided, the entire dataset (including, train and test data with easy and hard level) will be loaded.

## Dataset Structure

```json
{
  "repo_name": "repository name of the data point",
  "file_path": "path/to/file",
  "context": [
      "snippet 1",
      "snippet 2",
      // ...
      "snippet k"
  ],
  "import_statement": "all import statements in the file",
  "gold_snippet_idex": 2, // the index of the gold snippet in the context list, 0~k-1
  "code": "the code for next-line prediction",
  "next_line": "the next line of the code"
}
```

## Licensing Information

CC BY-NC-ND 4.0

## Citation Information

```bibtex
@misc{liu2023repobench,
      title={RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems}, 
      author={Tianyang Liu and Canwen Xu and Julian McAuley},
      year={2023},
      eprint={2306.03091},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## Contributions

Thanks to [@Leolty](https://github.com/Leolty) for adding this dataset.